Morality_binary / README.md
ajrayman's picture
End of training
7a37f7d verified
metadata
library_name: transformers
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: Morality_binary
    results: []

Morality_binary

This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6646
  • Accuracy: 0.7332
  • Precision: 0.6974
  • Recall: 0.8428
  • F1: 0.7632
  • Auc: 0.7309

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auc
No log 1.0 134 0.5929 0.7127 0.6667 0.8739 0.7563 0.7093
No log 2.0 268 0.5509 0.7407 0.7572 0.7239 0.7402 0.7410
No log 3.0 402 0.6646 0.7332 0.6974 0.8428 0.7632 0.7309

Framework versions

  • Transformers 4.44.1
  • Pytorch 1.11.0
  • Datasets 2.12.0
  • Tokenizers 0.19.1