metadata
library_name: transformers
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: machiavellianism_binary
results: []
machiavellianism_binary
This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6000
- Accuracy: 0.7284
- Precision: 0.7104
- Recall: 0.6075
- F1: 0.6549
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 127 | 0.5672 | 0.7284 | 0.7895 | 0.4907 | 0.6052 |
No log | 2.0 | 254 | 0.6207 | 0.7195 | 0.8372 | 0.4206 | 0.5599 |
No log | 3.0 | 381 | 0.6000 | 0.7284 | 0.7104 | 0.6075 | 0.6549 |
Framework versions
- Transformers 4.44.1
- Pytorch 1.11.0
- Datasets 2.12.0
- Tokenizers 0.19.1