wav2vec2-large-xlsr-53-AL-1000

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3865
  • Wer: 0.2321

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.0156 0.1063 200 3.0290 1.0
2.9588 0.2126 400 2.6180 1.0
1.1877 0.3189 600 0.6898 0.6574
0.6517 0.4252 800 0.5704 0.5222
0.5701 0.5315 1000 0.5273 0.5166
0.5243 0.6378 1200 0.4915 0.4742
0.4977 0.7441 1400 0.4686 0.4341
0.4642 0.8504 1600 0.4500 0.4045
0.4541 0.9567 1800 0.4374 0.4073
0.4264 1.0627 2000 0.4095 0.3677
0.4004 1.1690 2200 0.4050 0.3632
0.3904 1.2753 2400 0.3954 0.3399
0.391 1.3816 2600 0.4028 0.3688
0.3721 1.4879 2800 0.3784 0.3173
0.3776 1.5942 3000 0.3721 0.3143
0.3614 1.7005 3200 0.3769 0.3214
0.3621 1.8068 3400 0.3712 0.3190
0.3564 1.9131 3600 0.3675 0.3122
0.3501 2.0191 3800 0.3578 0.2831
0.322 2.1254 4000 0.3491 0.2820
0.3087 2.2317 4200 0.3517 0.2860
0.3135 2.3380 4400 0.3478 0.2734
0.3135 2.4443 4600 0.3524 0.2747
0.3021 2.5506 4800 0.3418 0.2573
0.3015 2.6569 5000 0.3439 0.2627
0.3037 2.7632 5200 0.3428 0.2652
0.2971 2.8695 5400 0.3411 0.2576
0.3002 2.9758 5600 0.3354 0.2492
0.2659 3.0818 5800 0.3399 0.2512
0.2597 3.1881 6000 0.3355 0.2489
0.275 3.2944 6200 0.3332 0.2599
0.2703 3.4007 6400 0.3340 0.2489
0.2678 3.5070 6600 0.3296 0.2497
0.2646 3.6133 6800 0.3333 0.2495
0.2573 3.7196 7000 0.3266 0.2445
0.2604 3.8259 7200 0.3288 0.2400
0.2603 3.9322 7400 0.3243 0.2476
0.2582 4.0383 7600 0.3236 0.2468
0.2322 4.1446 7800 0.3292 0.2602
0.2296 4.2509 8000 0.3232 0.2397
0.2289 4.3572 8200 0.3246 0.2485
0.2267 4.4635 8400 0.3192 0.2382
0.2284 4.5698 8600 0.3193 0.2395
0.2336 4.6761 8800 0.3203 0.2385
0.2346 4.7824 9000 0.3164 0.2385
0.2279 4.8887 9200 0.3199 0.2365
0.2293 4.9950 9400 0.3223 0.2377
0.1982 5.1010 9600 0.3386 0.2415
0.198 5.2073 9800 0.3437 0.2444
0.2092 5.3136 10000 0.3343 0.2387
0.1964 5.4199 10200 0.3318 0.2381
0.1957 5.5262 10400 0.3307 0.2314
0.1951 5.6325 10600 0.3371 0.2343
0.1969 5.7388 10800 0.3328 0.2306
0.2021 5.8451 11000 0.3288 0.2327
0.2036 5.9514 11200 0.3278 0.2337
0.1828 6.0574 11400 0.3498 0.2297
0.1759 6.1637 11600 0.3464 0.2302
0.1702 6.2700 11800 0.3438 0.2311
0.1735 6.3763 12000 0.3469 0.2285
0.1689 6.4826 12200 0.3529 0.2288
0.1735 6.5889 12400 0.3380 0.2284
0.1687 6.6952 12600 0.3429 0.2261
0.1671 6.8015 12800 0.3426 0.2293
0.1752 6.9078 13000 0.3462 0.2263
0.1677 7.0138 13200 0.3379 0.2369
0.1486 7.1201 13400 0.3437 0.2328
0.1489 7.2264 13600 0.3440 0.2331
0.1484 7.3327 13800 0.3469 0.2375
0.1474 7.4390 14000 0.3455 0.2337
0.1463 7.5453 14200 0.3477 0.2310
0.1516 7.6516 14400 0.3450 0.2328
0.1489 7.7579 14600 0.3496 0.2318
0.1501 7.8642 14800 0.3421 0.2319
0.1478 7.9705 15000 0.3510 0.2383
0.1297 8.0765 15200 0.3693 0.2310
0.1288 8.1828 15400 0.3776 0.2321
0.1289 8.2891 15600 0.3683 0.2344
0.1384 8.3954 15800 0.3683 0.2295
0.1304 8.5017 16000 0.3712 0.2318
0.1328 8.6080 16200 0.3659 0.2306
0.1296 8.7143 16400 0.3624 0.2305
0.1292 8.8206 16600 0.3607 0.2312
0.1302 8.9269 16800 0.3659 0.2295
0.1266 9.0330 17000 0.3809 0.2304
0.1202 9.1393 17200 0.3856 0.2291
0.1191 9.2455 17400 0.3837 0.2317
0.1149 9.3518 17600 0.3847 0.2309
0.1113 9.4581 17800 0.3865 0.2330
0.1193 9.5644 18000 0.3867 0.2344
0.1162 9.6707 18200 0.3855 0.2351
0.1181 9.7770 18400 0.3853 0.2328
0.1186 9.8833 18600 0.3861 0.2321
0.1166 9.9896 18800 0.3865 0.2321

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for akadriu/wav2vec2-large-xlsr-53-AL-1000

Finetuned
(224)
this model