|
--- |
|
language: hu |
|
license: mit |
|
widget: |
|
- text: "Karikó Katalin megkapja Szeged díszpolgárságát." |
|
--- |
|
# Hungarian Named Entity Recognition (NER) Model |
|
This model is the fine-tuned model of "SZTAKI-HLT/hubert-base-cc" |
|
using the famous WikiANN dataset presented |
|
in the "Cross-lingual Name Tagging and Linking for 282 Languages" [paper](https://aclanthology.org/P17-1178.pdf). |
|
|
|
# Fine-tuning parameters: |
|
``` |
|
task = "ner" |
|
model_checkpoint = "SZTAKI-HLT/hubert-base-cc" |
|
batch_size = 8 |
|
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] |
|
max_length = 512 |
|
learning_rate = 2e-5 |
|
num_train_epochs = 3 |
|
weight_decay = 0.01 |
|
``` |
|
# How to use: |
|
``` |
|
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-hungarian-cased-ner") |
|
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-hungarian-cased-ner") |
|
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") |
|
ner("<your text here>") |
|
``` |
|
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. |
|
|
|
# Reference test results: |
|
* accuracy: 0.9774538310923768 |
|
* f1: 0.9462099085573904 |
|
* precision: 0.9425718667406271 |
|
* recall: 0.9498761426661113 |