akhisreelibra's picture
Update README.md
ac3d00c
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-malayalam-pos-tagger
    results: []

akhisreelibra/bert-malayalam-pos-tagger

This model is a fine-tuned version of bert-base-multilingual-uncased on a set of tagged Malayalam sentence dataset It achieves the following results on the evaluation set:

  • Loss: 0.4383
  • Precision: 0.7380
  • Recall: 0.7767
  • F1: 0.7569
  • Accuracy: 0.8552

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

Tag abbreviation Tag name
'CC_CCD' Co-ordinator
'CC_CCS' Subordinator
'CC_CCS_UT' Quotative
'DM_DMD' Deictic demonstrative
'DM_DMQ' Wh-word
'DM_DMR' Relative demonstrative
'JJ' Adjective
'N_NN' Common noun
'N_NNP' Proper noun
'N_NST' Locative noun
'PR_PRC' Reciprocal pronoun
'PR_PRF' Reflexive pronoun
'PR_PRL' Relative pronoun
'PR_PRP' Personal pronoun
'PR_PRQ' Wh-word
'PSP' Postposition
'QT_QTC' Cardinals
'QT_QTF' General quantifier
'QT_QTO' Ordinals
'RB' Adverb
'RD_ECH' Echo words
'RD_RDF' Foreign words
'RD_SYM' Symbol
'RD_UNK' Unknown
'RP_CL' Classifier particle
'RP_INJ' Interjection particle
'RP_INTF' Intensifier particle
'RP_NEG' Negation particle
'RP_RPD' Default particle
'V_VAUX' Auxiliary verb
'V_VM' Main verb
'V_VM_VF' Finite verb
'V_VM_VINF' Infinite verb
'V_VM_VNF' Non-finite verb
'V_VN' Verbal noun

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.518 1.0 2692 0.4987 0.7124 0.7415 0.7267 0.8374
0.4415 2.0 5384 0.4515 0.7221 0.7679 0.7443 0.8481
0.3645 3.0 8076 0.4383 0.7380 0.7767 0.7569 0.8552

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1