SetFit with akhooli/sbert_ar_nli_500k_norm
This is a SetFit model that can be used for Text Classification. This SetFit model uses akhooli/sbert_ar_nli_500k_norm as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. Normalize the text before classifying as the model uses normalized text. Here's how to use the model:
pip install setfit
from setfit import SetFitModel
from unicodedata import normalize
# Download model from Hub
model = SetFitModel.from_pretrained("akhooli/setfit_ar_sst2")
# Run inference
queries = [
"يغلي الماء عند 100 درجة مئوية",
"فعلا لقد أحببت ذلك الفيلم",
"🤮 اﻷناناس مع البيتزا؟ إنه غير محبذ",
"رأيت أناسا بائسين في الطريق",
"لم يعجبني المطعم رغم أن السعر مقبول",
"من باب جبر الخاطر هذه 3 نجوم لتقييم الخدمة",
"من باب جبر الخواطر، هذه نجمة واحدة لخدمة ﻻ تستحق"
]
queries_n = [normalize('NFKC', query) for query in queries]
preds = model.predict(queries_n)
print(preds)
# if you want to see the probabilities for each label
probas = model.predict_proba(queries_n)
print(probas)
The rest of this card is auto-generated.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: akhooli/sbert_ar_nli_500k_norm
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
negative |
|
positive |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8784 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("akhooli/setfit")
# Run inference
preds = model("لقد تم إنجازه من قبل ولكن لم يكن بهذه الوضوح أو بهذا القدر من الشغف. ")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 16.2702 | 52 |
Label | Training Sample Count |
---|---|
negative | 2500 |
positive | 2500 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (1, 1)
- max_steps: 5000
- sampling_strategy: undersampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- run_name: setfit_sst2_5k
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.3009 | - |
0.04 | 100 | 0.2802 | - |
0.08 | 200 | 0.2312 | - |
0.12 | 300 | 0.1462 | - |
0.16 | 400 | 0.0838 | - |
0.2 | 500 | 0.0463 | - |
0.24 | 600 | 0.033 | - |
0.28 | 700 | 0.0206 | - |
0.32 | 800 | 0.0195 | - |
0.36 | 900 | 0.0174 | - |
0.4 | 1000 | 0.013 | - |
0.44 | 1100 | 0.0113 | - |
0.48 | 1200 | 0.0095 | - |
0.52 | 1300 | 0.0088 | - |
0.56 | 1400 | 0.0075 | - |
0.6 | 1500 | 0.0083 | - |
0.64 | 1600 | 0.0061 | - |
0.68 | 1700 | 0.0071 | - |
0.72 | 1800 | 0.0069 | - |
0.76 | 1900 | 0.0054 | - |
0.8 | 2000 | 0.007 | - |
0.84 | 2100 | 0.006 | - |
0.88 | 2200 | 0.0051 | - |
0.92 | 2300 | 0.0046 | - |
0.96 | 2400 | 0.0041 | - |
1.0 | 2500 | 0.0056 | - |
1.04 | 2600 | 0.0054 | - |
1.08 | 2700 | 0.0058 | - |
1.12 | 2800 | 0.0043 | - |
1.16 | 2900 | 0.0048 | - |
1.2 | 3000 | 0.004 | - |
1.24 | 3100 | 0.0036 | - |
1.28 | 3200 | 0.0042 | - |
1.32 | 3300 | 0.0041 | - |
1.3600 | 3400 | 0.004 | - |
1.4 | 3500 | 0.0029 | - |
1.44 | 3600 | 0.0047 | - |
1.48 | 3700 | 0.0041 | - |
1.52 | 3800 | 0.0026 | - |
1.56 | 3900 | 0.0029 | - |
1.6 | 4000 | 0.0027 | - |
1.6400 | 4100 | 0.0027 | - |
1.6800 | 4200 | 0.0033 | - |
1.72 | 4300 | 0.0031 | - |
1.76 | 4400 | 0.003 | - |
1.8 | 4500 | 0.0024 | - |
1.8400 | 4600 | 0.0028 | - |
1.88 | 4700 | 0.002 | - |
1.92 | 4800 | 0.0017 | - |
1.96 | 4900 | 0.0023 | - |
2.0 | 5000 | 0.0014 | - |
Framework Versions
- Python: 3.10.14
- SetFit: 1.2.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for akhooli/setfit_ar_sst2
Base model
aubmindlab/bert-base-arabertv02
Finetuned
akhooli/sbert_ar_nli_500k_norm