|
--- |
|
license: cc-by-sa-4.0 |
|
language: ja |
|
pipeline_tag: zero-shot-classification |
|
library_name: sentence-transformers |
|
tags: |
|
- cross-encoder |
|
- tohoku-nlp/bert-base-japanese-v3 |
|
- nli |
|
- natural-language-inference |
|
datasets: |
|
- shunk031/jsnli |
|
- hpprc/jsick |
|
- shunk031/JGLUE |
|
--- |
|
|
|
|
|
# Cross-Encoder for Natural Language Inference(NLI) for Japanese |
|
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. |
|
This model is based on [tohoku-nlp/bert-base-japanese-v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3). |
|
|
|
## Training Data |
|
The model was trained on following datasets. |
|
|
|
- [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88) |
|
- [JNLI](https://github.com/yahoojapan/JGLUE) (only train set) |
|
- [JSICK](https://github.com/verypluming/JSICK) (only train set) |
|
|
|
|
|
For a given sentence pair, it will output three scores corresponding to the labels: {0:"entailment", 1:"neutral", 2:"contradiction}. |
|
|
|
## Usage |
|
|
|
Pre-trained models can be used like this: |
|
```python |
|
from sentence_transformers import CrossEncoder |
|
model = CrossEncoder('akiFQC/bert-base-japanese-v3_nli-jsnli') |
|
scores = model.predict([('男はピザを食べています', '男は何かを食べています'), ('黒いレーシングカーが観衆の前から発車します。', '男は誰もいない道を運転しています。')]) |
|
|
|
#Convert scores to labels |
|
label_mapping = ['entailment', 'neutral', 'contradiction',] |
|
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)] |
|
``` |
|
|
|
## Usage with Transformers AutoModel |
|
You can use the model also directly with Transformers library (without SentenceTransformers library): |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-deberta-v3-base') |
|
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-deberta-v3-base') |
|
|
|
features = tokenizer(['男はピザを食べています', '黒いレーシングカーが観衆の前から発車します。'], ['男は何かを食べています', '男は誰もいない道を運転しています。'], padding=True, truncation=True, return_tensors="pt") |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
scores = model(**features).logits |
|
label_mapping = ['contradiction', 'entailment', 'neutral'] |
|
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] |
|
print(labels) |
|
``` |
|
|
|
## Zero-Shot Classification |
|
This model can also be used for zero-shot-classification: |
|
```python |
|
from transformers import pipeline |
|
|
|
classifier = pipeline("zero-shot-classification", model='akiFQC/bert-base-japanese-v3_nli-jsnli') |
|
|
|
sent = "Appleは先程、iPhoneの最新機種について発表しました。" |
|
candidate_labels = ["技術", "スポーツ", "政治"] |
|
res = classifier(sent, candidate_labels) |
|
print(res) |
|
``` |
|
|
|
## Benchmarks |
|
|
|
[JGLUE-JNLI](https://github.com/yahoojapan/JGLUE) validation set accuracy: 0.914 |