Edit model card

wav2vec2-xls-r-1b-ur

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.4885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 12
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.7368 0.48 300 inf 0.8191
1.8995 0.97 600 inf 0.7919
0.9144 1.45 900 inf 0.7805
1.166 1.94 1200 inf 0.7087
0.7972 2.42 1500 inf 0.6901
0.8604 2.9 1800 inf 0.6446
0.6569 3.39 2100 inf 0.6560
0.7267 3.87 2400 inf 0.6363
0.687 4.35 2700 inf 0.6343
0.7143 4.84 3000 inf 0.6176
0.5283 5.32 3300 inf 0.6084
0.6917 5.81 3600 inf 0.5942
0.5396 6.29 3900 inf 0.5988
0.5523 6.77 4200 inf 0.5600
0.3167 7.26 4500 inf 0.5648
0.3176 7.74 4800 inf 0.5424
0.3987 8.23 5100 inf 0.5440
0.3327 8.71 5400 inf 0.5316
0.1936 9.19 5700 inf 0.5285
0.4701 9.68 6000 inf 0.5207
0.3581 10.16 6300 inf 0.5176
0.4038 10.65 6600 inf 0.5259
0.2699 11.13 6900 inf 0.5226
0.2302 11.61 7200 inf 0.5181
0.3275 12.1 7500 inf 0.5202
0.3024 12.58 7800 inf 0.5307
0.2568 13.06 8100 inf 0.5243
0.1641 13.55 8400 inf 0.5073
0.2637 14.03 8700 inf 0.5015
0.1778 14.52 9000 inf 0.4892
0.0874 15.0 9300 inf 0.4885

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results