Edit model card

German Semantic V3 BMF

This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v2-base-de. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: jinaai/jina-embeddings-v2-base-de
  • Maximum Sequence Length: 1024 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("akot/jina-semantic-bmf-matryoshka-1024-10epochs")
# Run inference
sentences = [
    '67 Abwandlung des Beispiels 1 in Rn. 66: A erhält zudem zwei Kinderzulagen für seine in den Jahren 2004 und 2005 geborenen Kinder. Beitragspflichtige Einnahmen 53.000 € 4 % 2.120 € höchstens 2.100 € anzusetzen 2.100 € abzüglich Zulage 175 € Mindesteigenbeitrag (§ 86 Abs. 1 Satz 2 EStG) 1.925 € Sockelbetrag (§ 86 Abs. 1 Satz 4 EStG) 60 € maßgebend (§ 86 Abs. 1 Satz 5 EStG) 1.925 € Die von A geleisteten Beiträge übersteigen den Mindesteigenbeitrag. Die Zulage wird nicht gekürzt.',
    'Wird die Zulage für A gekürzt, wenn die Beiträge den Mindesteigenbeitrag übersteigen?',
    'Wie erfolgt die Besteuerung bei der ausgleichsberechtigten Person nach einer externen Teilung?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.0
cosine_accuracy@3 0.0018
cosine_accuracy@5 0.0018
cosine_accuracy@10 0.0036
cosine_precision@1 0.0
cosine_precision@3 0.0006
cosine_precision@5 0.0004
cosine_precision@10 0.0004
cosine_recall@1 0.0
cosine_recall@3 0.0018
cosine_recall@5 0.0018
cosine_recall@10 0.0036
cosine_ndcg@10 0.0018
cosine_mrr@10 0.0012
cosine_map@100 0.0019

Information Retrieval

Metric Value
cosine_accuracy@1 0.0
cosine_accuracy@3 0.0018
cosine_accuracy@5 0.0036
cosine_accuracy@10 0.0036
cosine_precision@1 0.0
cosine_precision@3 0.0006
cosine_precision@5 0.0007
cosine_precision@10 0.0004
cosine_recall@1 0.0
cosine_recall@3 0.0018
cosine_recall@5 0.0036
cosine_recall@10 0.0036
cosine_ndcg@10 0.0019
cosine_mrr@10 0.0014
cosine_map@100 0.0023

Information Retrieval

Metric Value
cosine_accuracy@1 0.0
cosine_accuracy@3 0.0018
cosine_accuracy@5 0.0018
cosine_accuracy@10 0.0036
cosine_precision@1 0.0
cosine_precision@3 0.0006
cosine_precision@5 0.0004
cosine_precision@10 0.0004
cosine_recall@1 0.0
cosine_recall@3 0.0018
cosine_recall@5 0.0018
cosine_recall@10 0.0036
cosine_ndcg@10 0.0017
cosine_mrr@10 0.0011
cosine_map@100 0.002

Information Retrieval

Metric Value
cosine_accuracy@1 0.0
cosine_accuracy@3 0.0
cosine_accuracy@5 0.0
cosine_accuracy@10 0.0054
cosine_precision@1 0.0
cosine_precision@3 0.0
cosine_precision@5 0.0
cosine_precision@10 0.0005
cosine_recall@1 0.0
cosine_recall@3 0.0
cosine_recall@5 0.0
cosine_recall@10 0.0054
cosine_ndcg@10 0.0018
cosine_mrr@10 0.0007
cosine_map@100 0.0015

Information Retrieval

Metric Value
cosine_accuracy@1 0.0
cosine_accuracy@3 0.0
cosine_accuracy@5 0.0018
cosine_accuracy@10 0.0018
cosine_precision@1 0.0
cosine_precision@3 0.0
cosine_precision@5 0.0004
cosine_precision@10 0.0002
cosine_recall@1 0.0
cosine_recall@3 0.0
cosine_recall@5 0.0018
cosine_recall@10 0.0018
cosine_ndcg@10 0.0008
cosine_mrr@10 0.0005
cosine_map@100 0.0011

Training Details

Training Dataset

Unnamed Dataset

  • Size: 4,957 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 5 tokens
    • mean: 145.09 tokens
    • max: 1024 tokens
    • min: 9 tokens
    • mean: 19.57 tokens
    • max: 41 tokens
  • Samples:
    positive anchor
    134 Eine Rückzahlungsverpflichtung besteht nicht für den Teil der Zulagen, der auf nach § 1 Abs. 1 Nr. 2 AltZertG angespartes gefördertes Altersvorsorgevermögen entfällt, wenn es in Form einer Hinterbliebenenrente an die dort genannten Hinterbliebenen ausgezahlt wird. Dies gilt auch für den entsprechenden Teil der Steuerermäßigung. Muss man Zulagen zurückzahlen, wenn das Altersvorsorgevermögen als Hinterbliebenenrente ausgezahlt wird?
    140 Beendet der Zulageberechtigte vor der vollständigen Rückzahlung des AltersvorsorgeEigenheimbetrags die Nutzung zu eigenen Wohnzwecken, wird er so behandelt, als habe er den noch nicht zurückgezahlten Betrag schädlich verwendet. Die auf den noch ausstehenden Rückzahlungsbetrag entfallenden Zulagen sowie die nach § 10a Abs. 4 EStG gesondert festgestellten Steuerermäßigungen sind zurückzuzahlen (§ 92a Abs. 3 EStG). Die im noch ausstehenden Rückzahlungsbetrag enthaltenen Zuwächse (z.B. Zinserträge und Kursgewinne) Seite 41 sind als sonstige Einkünfte zu versteuern (§ 22 Nr. 5 Satz 5 Halbsatz 1 EStG). Außerdem hat der Zulageberechtigte den Vorteil zu versteuern, der sich aus der zinslosen Nutzung des noch nicht zurückgezahlten Betrags ergibt. Zugrunde gelegt wird hierbei eine Verzinsung von 5 % (Zins und Zinseszins) für jedes volle Kalenderjahr der Nutzung (§ 22 Nr. 5 Satz 5 Halbsatz 2 EStG). Diese Folgen treten nicht ein, wenn er den noch nicht zurückgezahlten Betrag in ein Folgeobjekt investiert (§ 92a Abs. 4 Satz 3 Nr. 1 EStG) oder zugunsten eines auf seinen Namen lautenden zertifizierten Altersvorsorgevertrags einzahlt (§ 92a Abs. 4 Satz 3 Nr. 2 EStG). Was geschieht steuerlich, wenn der AltersvorsorgeEigenheimbetrag nicht vollständig zurückgezahlt wird und die Immobilie nicht mehr selbst genutzt wird?
    144 Die als Einkünfte nach § 22 Nr. 5 Satz 3 EStG i.V.m. § 22 Nr. 5 Satz 2 EStG zu besteuernden Beträge muss der Anbieter gem. § 94 Abs. 1 Satz 4 EStG dem Zulageberechtigten bescheinigen und im Wege des Rentenbezugsmitteilungsverfahrens (§ 22a EStG) mitteilen. Ergeben sich insoweit steuerpflichtige Einkünfte nach § 22 Nr. 5 Satz 3 EStG für einen anderen Leistungsempfänger (z. B. Erben), ist für diesen eine entsprechende Rentenbezugsmitteilung der ZfA zu übermitteln. Was muss im Falle eines anderen Leistungsempfängers, wie Erben, hinsichtlich der Rentenbezugsmitteilung getan werden?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.5161 10 19.1189 - - - - -
0.9806 19 - 0.0008 0.0009 0.0007 0.0004 0.0006
1.0323 20 19.0037 - - - - -
1.5484 30 18.7625 - - - - -
1.9613 38 - 0.0007 0.0008 0.0007 0.0004 0.0008
2.0645 40 18.3193 - - - - -
2.5806 50 18.5378 - - - - -
2.9935 58 - 0.0018 0.002 0.0017 0.0018 0.0016
3.0968 60 18.103 - - - - -
3.6129 70 18.0413 - - - - -
3.9742 77 - 0.0011 0.0006 0.0004 0.0006 0.0004
4.1290 80 17.7272 - - - - -
4.6452 90 17.4282 - - - - -
4.9548 96 - 0.0014 0.0011 0.0009 0.0005 0.0007
5.1613 100 17.2805 - - - - -
5.6774 110 17.3362 - - - - -
5.9871 116 - 0.0005 0.0002 0.0002 0.0016 0.0003
6.1935 120 17.1479 - - - - -
6.7097 130 17.1761 - - - - -
6.9677 135 - 0.0020 0.0025 0.0025 0.0017 0.0020
7.2258 140 16.8886 - - - - -
7.7419 150 16.9517 - - - - -
8.0 155 - 0.0008 0.0009 0.0010 0.0005 0.0010
8.2581 160 17.0198 - - - - -
8.7742 170 16.7575 - - - - -
8.9806 174 - 0.0013 0.0009 0.0007 0.0008 0.0007
9.2903 180 16.8138 - - - - -
9.8065 190 16.9424 0.0015 0.0020 0.0023 0.0011 0.0019
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.4
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
21
Safetensors
Model size
139M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for akot/jina-semantic-bmf-matryoshka-1024-10epochs

Finetuned
(2)
this model

Evaluation results