Edit model card

models

This model is a fine-tuned version of Salesforce/blip-image-captioning-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4107
  • Wer Score: 0.5495

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Wer Score
9.4536 0.05 10 7.8217 41.7753
7.3267 0.11 20 6.6585 0.7753
6.2358 0.16 30 5.7758 0.5667
5.2862 0.22 40 4.7628 0.5419
4.3786 0.27 50 3.9203 0.6398
3.5554 0.33 60 3.1482 0.5613
2.849 0.38 70 2.5209 0.5548
2.3041 0.44 80 2.0561 0.5645
1.8999 0.49 90 1.7474 0.5645
1.658 0.55 100 1.5722 0.5548
1.5238 0.6 110 1.4836 0.5591
1.4726 0.66 120 1.4461 0.5538
1.4328 0.71 130 1.4285 0.5473
1.4211 0.77 140 1.4205 0.5559
1.4202 0.82 150 1.4156 0.5548
1.4098 0.88 160 1.4129 0.5505
1.4124 0.93 170 1.4113 0.5548
1.4075 0.99 180 1.4107 0.5495

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cpu
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
3
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.