kl3m-003-64k tokenizer
The kl3m-003-64k
tokenizer is a domain-specific tokenizer trained on ~1.5T tokens of financial and legal text from sources that contain primarily English, German, Spanish, and French language.
This tokenizer was used for the second generation of KL3M embedding and generative models, including
kl3m-3.7B
, kl3m-7B
, kl3m-embedding-003
, and kl3m-embedding-004
.
Please see kl3m-001-32k
for the first iteration of our research on domain-specific tokenization.
Model Details
Summary
- Vocabulary: 65,536
- Tokenizer type: BPE
- Special token support: Both causal and masked language modeling
- Language(s) (NLP): Primarily English, Spanish, German, French, with a small percentage of other EU languages.
- Developed by: Originally by 273 Ventures LLC, donated to ALEA Institute.
- License: CC-BY 4.0
Model Description
The kl3m-003-64k
tokenizer is a domain-specific tokenizer trained on ~1.5T tokens of financial and legal text from primarily-English sources.
This tokenizer is notable for a number of reasons:
Domain Specific
As part of our research on more efficient SLM training for the legal and financial domain, we trained a domain-specific tokenizer on a large corpus of financial and legal text. This tokenizer has not, for example, seen any common general pretrain sources like Wikipedia or Common Crawl.
Large Added Token Set
As part of our research on efficient and reliable extraction and generation, we inserted
a large numer of deterministic "whole" tokens into the tokenizer, such as HTML tags
like <span
, common Markdown elements like #
and ##
, and legal enumerations like (a)
.
Note that the kl3m-003-64k tokenizer has added a number of additional citation formats that were not included in the kl3m-001-32k tokenizer. These were primarily sourced from empirical data and the Free Law Project's reporters-db, which were added to the tokenizer to improve model behavior related to legal citations.
See the get_custom_tokens
method in kl3m_embeddings/training/kl3m_003/train_tokenizer.py
for
more details:
def get_custom_tokens(
include_whitespace: bool = True,
include_markdown: bool = True,
include_html: bool = True,
include_json: bool = True,
include_xml: bool = True,
include_years: bool = True,
include_citations: bool = True,
lowercase: bool = False,
) -> list[str]:
Space Preservation
Unlike kl3m-001-32k
, we do not retain the space character as a token. This was done after adding additional legal
citation tokens to the vocabulary, which reduced the number of issues related to space tokenization in legal text. This
means that the kl3m-003-64k
tokenizer uses substantially fewer tokens than kl3m-001-32k
for most text.
Special Tokens for both Embedding and Generative Models
For both training and inference efficiency, we intended this tokenizer vocabulary to be usable for both embedding and generative models. As such, we included special tokens suitable for both causal and masked language modeling tasks.
<|start|>
:0
<|end|>
:1
<|pad|>
:2
<|unk|>
:3
<|sep|>
:4
<|cls|>
:5
<|mask|>
:6
We also added a number of chat and instruction tokens that were not included in kl3m-001-32k
, including:
<|system|>
:7
</|system|>
:8
<|user|>
:9
</|user|>
:10
<|instruction|>
:11
</|instruction|>
:12
Replication
The entire data collection and preprocesing pipeline is being made available, along with training data, as part of the ALEA Institute KL3M project.
The source code to used to train the tokenizer is available on GitHub at: https://github.com/alea-institute/kl3m-embedding-research
The data pipeline will be available on GitHub and S3 in the near future.
Uses
This tokenizer is intended to be used for English, Spanish, German, or French language text in professional contexts such as legal and financial documents.
Recommendations
In general, the kl3m-003-64k
tokenizer is recommended over the original kl3m-001-32k
tokenizer.
Original text: The Comptroller of the Currency shall have the same authority with respect to functions transferred to
the Comptroller of the Currency under the Enhancing Financial Institution Safety and Soundness Act of 2010 as was
vested in the Director of the Office of Thrift Supervision on the transfer date, as defined in section 311 of that
Act [12 U.S.C. 5411].
kl3m-001-32k
--------------------
Size: 147
Tokens: ['The', ' ', 'Comp', 'troller', ' ', 'of', ' ', 'the', ' ', 'C', 'urrency', ' ', 'shall', ' ', 'have', ' ', 'the', ' ', 'same', ' ', 'authority', ' ', 'with', ' ', 'respect', ' ', 'to', ' ', 'fun', 'ctions', ' ', 'transferred', ' ', 'to', '\n', ' ', 'the', ' ', 'Comp', 'troller', ' ', 'of', ' ', 'the', ' ', 'C', 'urrency', ' ', 'under', ' ', 'the', ' ', 'En', 'ha', 'ncing', ' ', 'Financial', ' ', 'Institution', ' ', 'Sa', 'fe', 'ty', ' ', 'a', 'n', 'd', ' ', 'S', 'ound', 'ness', ' ', 'Act', ' ', 'of', ' ', '2010', ' ', 'as', ' ', 'was', '\n', ' ', 'vested', ' ', 'i', 'n', ' ', 'the', ' ', 'Director', ' ', 'of', ' ', 'the', ' ', 'Office', ' ', 'of', ' ', 'Th', 'rift', ' ', 'Superv', 'ision', ' ', 'o', 'n', ' ', 'the', ' ', 'transfer', ' ', 'date', ',', ' ', 'as', ' ', 'defined', ' ', 'i', 'n', ' ', 'section', ' ', '311', ' ', 'of', ' ', 'that', '\n', ' ', 'Act', ' ', '[', '12', ' ', 'U', '.', 'S', '.', 'C', '.', ' ', '54', '11', '].']
IDs: [815, 31673, 3546, 14529, 31673, 269, 31673, 441, 31673, 41, 9646, 31673, 5516, 31673, 4130, 31673, 441, 31673, 8685, 31673, 14765, 31673, 1946, 31673, 12500, 31673, 265, 31673, 12122, 1935, 31673, 12677, 31673, 265, 31674, 31673, 441, 31673, 3546, 14529, 31673, 269, 31673, 441, 31673, 41, 9646, 31673, 2823, 31673, 441, 31673, 1871, 288, 2655, 31673, 20796, 31673, 29543, 31673, 4778, 362, 1004, 31673, 71, 84, 74, 31673, 57, 1098, 1647, 31673, 8494, 31673, 269, 31673, 3629, 31673, 310, 31673, 3182, 31674, 31673, 9761, 31673, 79, 84, 31673, 441, 31673, 21209, 31673, 269, 31673, 441, 31673, 8827, 31673, 269, 31673, 788, 11004, 31673, 28799, 873, 31673, 85, 84, 31673, 441, 31673, 12790, 31673, 2726, 18, 31673, 310, 31673, 10212, 31673, 79, 84, 31673, 3517, 31673, 15340, 31673, 269, 31673, 1704, 31674, 31673, 8494, 31673, 65, 534, 31673, 59, 20, 57, 20, 41, 20, 31673, 2195, 572, 5582]
kl3m-003-64k
--------------------
Size: 70
Tokens: ['The', 'ĠComptroller', 'Ġof', 'Ġthe', 'ĠCurrency', 'Ġshall', 'Ġhave', 'Ġthe', 'Ġsame', 'Ġauthority', 'Ġwith', 'Ġrespect', 'Ġto', 'Ġfunctions', 'Ġtransferred', 'Ġto', 'Ċ', 'Ġthe', 'ĠComptroller', 'Ġof', 'Ġthe', 'ĠCurrency', 'Ġunder', 'Ġthe', 'ĠEnh', 'ancing', 'ĠFinancial', 'ĠInstitution', 'ĠSafety', 'Ġand', 'Ġ', 'Sound', 'ness', 'ĠAct', 'Ġof', 'Ġ2010', 'Ġas', 'Ġwas', 'Ċ', 'Ġvested', 'Ġin', 'Ġthe', 'ĠDirector', 'Ġof', 'Ġthe', 'ĠOffice', 'Ġof', 'ĠThrift', 'ĠSupervision', 'Ġon', 'Ġthe', 'Ġtransfer', 'Ġdate', ',', 'Ġas', 'Ġdefined', 'Ġin', 'Ġsection', 'Ġ311', 'Ġof', 'Ġthat', 'Ċ', 'ĠAct', 'Ġ[', '12', 'Ġ', 'U.S.C.', 'Ġ54', '11', '].']
IDs: [671, 13273, 295, 281, 25922, 735, 704, 281, 1913, 2451, 440, 1894, 312, 5860, 7264, 312, 211, 281, 13273, 295, 281, 25922, 621, 281, 18926, 4406, 3195, 24448, 5617, 310, 233, 63589, 2130, 854, 295, 1611, 398, 725, 211, 11978, 300, 281, 2827, 295, 281, 1767, 295, 44029, 37141, 395, 281, 3696, 1548, 24, 398, 3011, 300, 782, 6590, 295, 407, 211, 854, 1327, 524, 233, 63761, 3789, 547, 8578]
How to Get Started with the Model
Use the code below to get started with the model.
from tokenizers import Tokenizer
tokenizer = Tokenizer.from_pretrained('alea-institute/kl3m-003-64k')
Citation
Tokenizer and dataset publications are pending.
Contact
For any questions, please contact ALEA Institute at hello@aleainstitute.ai or create an issue on this repository or GitHub.