results
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1516
- Roc Auc: 0.8130
- Hamming Loss: 0.0509
- F1 Score: 0.6969
- Accuracy: 0.4418
- Precision: 0.8279
- Recall: 0.6583
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Roc Auc | Hamming Loss | F1 Score | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 374 | 0.2285 | 0.6386 | 0.0822 | 0.3390 | 0.2731 | 0.8932 | 0.3080 |
0.2678 | 2.0 | 748 | 0.1870 | 0.7175 | 0.0679 | 0.5123 | 0.3481 | 0.7842 | 0.4679 |
0.1722 | 3.0 | 1122 | 0.1727 | 0.7839 | 0.0607 | 0.6116 | 0.3949 | 0.7611 | 0.6096 |
0.1722 | 4.0 | 1496 | 0.1577 | 0.7865 | 0.0545 | 0.6408 | 0.4137 | 0.8178 | 0.6096 |
0.1236 | 5.0 | 1870 | 0.1537 | 0.8055 | 0.0523 | 0.6798 | 0.4230 | 0.8250 | 0.6423 |
0.0847 | 6.0 | 2244 | 0.1570 | 0.8069 | 0.0541 | 0.6695 | 0.4297 | 0.7839 | 0.6503 |
0.063 | 7.0 | 2618 | 0.1516 | 0.8130 | 0.0509 | 0.6969 | 0.4418 | 0.8279 | 0.6583 |
0.063 | 8.0 | 2992 | 0.1531 | 0.8147 | 0.0512 | 0.6856 | 0.4458 | 0.7982 | 0.6622 |
0.0465 | 9.0 | 3366 | 0.1526 | 0.8427 | 0.0489 | 0.7544 | 0.4565 | 0.8190 | 0.7174 |
0.0349 | 10.0 | 3740 | 0.1534 | 0.8349 | 0.0498 | 0.7414 | 0.4431 | 0.8212 | 0.7023 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 108
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for alecmontero/SciBERT-ES-TweetAreas
Base model
google-bert/bert-base-multilingual-cased