results

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1516
  • Roc Auc: 0.8130
  • Hamming Loss: 0.0509
  • F1 Score: 0.6969
  • Accuracy: 0.4418
  • Precision: 0.8279
  • Recall: 0.6583

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Roc Auc Hamming Loss F1 Score Accuracy Precision Recall
No log 1.0 374 0.2285 0.6386 0.0822 0.3390 0.2731 0.8932 0.3080
0.2678 2.0 748 0.1870 0.7175 0.0679 0.5123 0.3481 0.7842 0.4679
0.1722 3.0 1122 0.1727 0.7839 0.0607 0.6116 0.3949 0.7611 0.6096
0.1722 4.0 1496 0.1577 0.7865 0.0545 0.6408 0.4137 0.8178 0.6096
0.1236 5.0 1870 0.1537 0.8055 0.0523 0.6798 0.4230 0.8250 0.6423
0.0847 6.0 2244 0.1570 0.8069 0.0541 0.6695 0.4297 0.7839 0.6503
0.063 7.0 2618 0.1516 0.8130 0.0509 0.6969 0.4418 0.8279 0.6583
0.063 8.0 2992 0.1531 0.8147 0.0512 0.6856 0.4458 0.7982 0.6622
0.0465 9.0 3366 0.1526 0.8427 0.0489 0.7544 0.4565 0.8190 0.7174
0.0349 10.0 3740 0.1534 0.8349 0.0498 0.7414 0.4431 0.8212 0.7023

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
108
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for alecmontero/SciBERT-ES-TweetAreas

Finetuned
(632)
this model

Dataset used to train alecmontero/SciBERT-ES-TweetAreas