alecmontero's picture
Update README.md
0d23c5f verified
metadata
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - roc_auc
  - f1
model-index:
  - name: results_RoBERTa
    results: []
datasets:
  - alecmontero/dataset_tweetsmx_areasCPC
language:
  - es
library_name: transformers

results_RoBERTa

This model is a fine-tuned version of xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1365
  • Roc Auc: 0.8669
  • Hamming Loss: 0.0454
  • F1 Score: 0.7761
  • Accuracy: 0.4712
  • Precision: 0.7977
  • Recall: 0.7665

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Roc Auc Hamming Loss F1 Score Accuracy Precision Recall
No log 1.0 374 0.1904 0.6981 0.0674 0.4749 0.3440 0.7840 0.4297
0.2476 2.0 748 0.1674 0.7439 0.0612 0.5672 0.3802 0.8482 0.5228
0.1597 3.0 1122 0.1512 0.7955 0.0545 0.6516 0.4163 0.8172 0.6218
0.1597 4.0 1496 0.1414 0.8087 0.0511 0.6736 0.4324 0.8251 0.6535
0.1222 5.0 1870 0.1395 0.8344 0.0490 0.7153 0.4378 0.8190 0.7038
0.09 6.0 2244 0.1385 0.8485 0.0477 0.7552 0.4645 0.8182 0.7315
0.0663 7.0 2618 0.1391 0.8544 0.0466 0.7617 0.4712 0.7936 0.7401
0.0663 8.0 2992 0.1365 0.8669 0.0454 0.7761 0.4712 0.7977 0.7665
0.0461 9.0 3366 0.1375 0.8617 0.0460 0.7711 0.4699 0.7956 0.7569
0.0293 10.0 3740 0.1388 0.8636 0.0448 0.7736 0.4926 0.7953 0.7592

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1