|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
language: |
|
- en |
|
- es |
|
metrics: |
|
- rouge |
|
datasets: |
|
- csebuetnlp/xlsum |
|
model-index: |
|
- name: mt5-small-finetuned-xlsum-en-es |
|
results: [] |
|
widget: |
|
- text: "The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct." |
|
example_title: English Summary |
|
- text: "La torre tiene 324 metros (1.063 pies) de altura, aproximadamente la misma altura que un edificio de 81 pisos, y la estructura más alta de París. Su base es cuadrada, mide 125 metros (410 pies) de lado. Durante su construcción, la Torre Eiffel superó al Monumento a Washington para convertirse en la estructura artificial más alta del mundo, un título que mantuvo durante 41 años hasta que se terminó el Edificio Chrysler en la ciudad de Nueva York en 1930. Fue la primera estructura en alcanzar una altura de 300 metros. Debido a la adición de una antena de transmisión en la parte superior de la torre en 1957, ahora es más alta que el Edificio Chrysler en 5,2 metros (17 pies). Excluyendo los transmisores, la Torre Eiffel es la segunda estructura independiente más alta de Francia después del viaducto de Millau." |
|
example_title: Spanish Summary |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-xlsum-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the csebuetnlp/xlsum dataset. |
|
|
|
Reduced versions of the English/Spanish subsets were used, focusing on shorter targets. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.9483 |
|
- Rouge1: 19.42 |
|
- Rouge2: 4.44 |
|
- Rougel: 16.7 |
|
- Rougelsum: 16.7 |
|
- Mean Len: 16.3231 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
Model may produce false information when summarizing. |
|
|
|
This is very much an initial draft, and is not expected for use in production, use at your own risk. |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
Lead-3 Baseline: |
|
- Rouge1: 12.22 |
|
- Rouge2: 2.01 |
|
- RougeL: 9.02 |
|
- RougeLsum: 10.33 |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Mean Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| |
|
| 6.7763 | 1.0 | 1237 | 3.1120 | 13.57 | 2.76 | 11.59 | 11.59 | 12.6116 | |
|
| 4.1022 | 2.0 | 2474 | 2.9718 | 19.35 | 4.32 | 16.63 | 16.64 | 16.3084 | |
|
| 3.9219 | 3.0 | 3711 | 2.9483 | 19.42 | 4.44 | 16.7 | 16.7 | 16.3231 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|
|
|
|
## Citation |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
``` |
|
@inproceedings{hasan-etal-2021-xl, |
|
title = "{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages", |
|
author = "Hasan, Tahmid and |
|
Bhattacharjee, Abhik and |
|
Islam, Md. Saiful and |
|
Mubasshir, Kazi and |
|
Li, Yuan-Fang and |
|
Kang, Yong-Bin and |
|
Rahman, M. Sohel and |
|
Shahriyar, Rifat", |
|
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", |
|
month = aug, |
|
year = "2021", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.findings-acl.413", |
|
pages = "4693--4703", |
|
} |
|
``` |