alexandre-huynh's picture
Training in progress epoch 0
ee6f7c1
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: alexandre-huynh/bert-base-uncased-finetuned-squad
    results: []

alexandre-huynh/bert-base-uncased-finetuned-squad

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.3040
  • Train End Logits Accuracy: 0.6583
  • Train Start Logits Accuracy: 0.6162
  • Validation Loss: 1.0191
  • Validation End Logits Accuracy: 0.7215
  • Validation Start Logits Accuracy: 0.6925
  • Epoch: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
1.3040 0.6583 0.6162 1.0191 0.7215 0.6925 0

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2