alexbeta80's picture
End of training
aa35437 verified
|
raw
history blame
2.43 kB
metadata
base_model: microsoft/mdeberta-v3-base
library_name: peft
license: mit
metrics:
  - precision
  - recall
  - f1
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: mdeberta-v3-base-finetuned-ner
    results: []

mdeberta-v3-base-finetuned-ner

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1094
  • Precision: 0.9101
  • Recall: 0.9567
  • F1: 0.9328
  • Accuracy: 0.9757

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2289 1.0 1167 0.1496 0.8186 0.8964 0.8557 0.9524
0.1466 2.0 2334 0.1193 0.8771 0.9312 0.9033 0.9677
0.1064 3.0 3501 0.1143 0.8768 0.9451 0.9097 0.9673
0.0808 4.0 4668 0.0978 0.8968 0.9491 0.9222 0.9724
0.0668 5.0 5835 0.1111 0.8889 0.9533 0.9200 0.9713
0.0559 6.0 7002 0.1168 0.9054 0.9561 0.9301 0.9746
0.0459 7.0 8169 0.1085 0.9174 0.9457 0.9313 0.9749
0.0421 8.0 9336 0.1077 0.9141 0.9516 0.9325 0.9759
0.0324 9.0 10503 0.1084 0.9148 0.9575 0.9357 0.9766
0.03 10.0 11670 0.1094 0.9101 0.9567 0.9328 0.9757

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1