alexgshaw's picture
update model card README.md
09f7266
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - hyperpartisan_news_detection
metrics:
  - accuracy
model-index:
  - name: hyperpartisan-classifier
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: hyperpartisan_news_detection
          type: hyperpartisan_news_detection
          config: bypublisher
          split: validation
          args: bypublisher
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9988466666666667

hyperpartisan-classifier

This model is a fine-tuned version of distilbert-base-uncased on the hyperpartisan_news_detection dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0036
  • Accuracy: 0.9988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1441 0.11 1000 0.1391 0.9453
0.1248 0.21 2000 0.1042 0.9595
0.1027 0.32 3000 0.0913 0.9647
0.0928 0.43 4000 0.0827 0.9688
0.0992 0.53 5000 0.0799 0.9698
0.0881 0.64 6000 0.0710 0.9741
0.078 0.75 7000 0.0640 0.9762
0.0708 0.85 8000 0.0626 0.9764
0.0696 0.96 9000 0.0564 0.9792
0.0586 1.07 10000 0.0516 0.9813
0.0558 1.17 11000 0.0507 0.9815
0.0531 1.28 12000 0.0463 0.9829
0.0585 1.39 13000 0.0468 0.9831
0.0488 1.49 14000 0.0403 0.9854
0.057 1.6 15000 0.0393 0.9865
0.0514 1.71 16000 0.0349 0.9879
0.052 1.81 17000 0.0366 0.9868
0.0572 1.92 18000 0.0300 0.9895
0.0311 2.03 19000 0.0309 0.9893
0.0332 2.13 20000 0.0262 0.9908
0.0396 2.24 21000 0.0250 0.9914
0.0314 2.35 22000 0.0223 0.9924
0.0361 2.45 23000 0.0236 0.9919
0.0289 2.56 24000 0.0197 0.9933
0.0322 2.67 25000 0.0182 0.9939
0.0416 2.77 26000 0.0183 0.9937
0.0273 2.88 27000 0.0159 0.9946
0.0317 2.99 28000 0.0152 0.9949
0.0203 3.09 29000 0.0132 0.9957
0.0182 3.2 30000 0.0146 0.9953
0.0165 3.31 31000 0.0123 0.9961
0.0184 3.41 32000 0.0105 0.9968
0.0208 3.52 33000 0.0103 0.9967
0.0187 3.63 34000 0.0083 0.9973
0.0183 3.73 35000 0.0076 0.9977
0.0258 3.84 36000 0.0073 0.9977
0.0114 3.95 37000 0.0066 0.9979
0.007 4.05 38000 0.0052 0.9983
0.0094 4.16 39000 0.0061 0.9981
0.0106 4.27 40000 0.0053 0.9983
0.0134 4.37 41000 0.0052 0.9984
0.0087 4.48 42000 0.0040 0.9987
0.018 4.59 43000 0.0047 0.9985
0.0118 4.69 44000 0.0041 0.9987
0.012 4.8 45000 0.0038 0.9988
0.0165 4.91 46000 0.0036 0.9988

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2