Ali El Filali

alielfilali01

AI & ML interests

AI Psychometrician ? | NLP (mainly for Arabic) | Other interests include Reinforcement Learning and Cognitive sciences among others

Recent Activity

Reacted to vincentg64's post with 🧠 about 6 hours ago
There is no such thing as a Trained LLM https://mltblog.com/3CEJ9Pt What I mean here is that traditional LLMs are trained on tasks irrelevant to what they will do for the user. It’s like training a plane to efficiently operate on the runway, but not to fly. In short, it is almost impossible to train an LLM, and evaluating is just as challenging. Then, training is not even necessary. In this article, I dive on all these topics. ➡️ Training LLMs for the wrong tasks Since the beginnings with Bert, training an LLM typically consists of predicting the next tokens in a sentence, or removing some tokens and then have your algorithm fill the blanks. You optimize the underlying deep neural networks to perform these supervised learning tasks as well as possible. Typically, it involves growing the list of tokens in the training set to billions or trillions, increasing the cost and time to train. However, recently, there is a tendency to work with smaller datasets, by distilling the input sources and token lists. After all, out of one trillion tokens, 99% are noise and do not contribute to improving the results for the end-user; they may even contribute to hallucinations. Keep in mind that human beings have a vocabulary of about 30,000 keywords, and that the number of potential standardized prompts on a specialized corpus (and thus the number of potential answers) is less than a million. ➡️ Read the full articles at https://mltblog.com/3CEJ9Pt, also featuring issues with evaluation metrics and the benefits of untrained LLMs.
Reacted to malhajar's post with 🔥 3 days ago
🇫🇷 Lancement officiel de l'OpenLLM French Leaderboard : initiative open-source pour référencer l’évaluation des LLMs francophones Après beaucoup d’efforts et de sueurs avec Alexandre Lavallee, nous sommes ravis d’annoncer que le OpenLLMFrenchLeaderboard est en ligne sur Hugging Face (space url: https://huggingface.co/spaces/le-leadboard/OpenLLMFrenchLeaderboard) la toute première plateforme dédiée à l’évaluation des grands modèles de langage (LLM) en français. 🇫🇷✨ Ce projet de longue haleine est avant tout une œuvre de passion mais surtout une nécessité absolue. Il devient urgent et vital d'oeuvrer à plus de transparence dans ce domaine stratégique des LLM dits multilingues. La première pièce à l'édifice est donc la mise en place d'une évaluation systématique et systémique des modèles actuels et futurs. Votre modèle IA français est-il prêt à se démarquer ? Soumettez le dans notre espace, et voyez comment vous vous comparez par rapport aux autres modèles. ❓ Comment ça marche : Soumettez votre LLM français pour évaluation, et nous le testerons sur des benchmarks de référence spécifiquement adaptés pour la langue française — notre suite de benchmarks comprend : - BBH-fr : Raisonnement complexe - IFEval-fr : Suivi d'instructions - GPQA-fr : Connaissances avancées - MUSR-fr : Raisonnement narratif - MATH_LVL5-fr : Capacités mathématiques - MMMLU-fr : Compréhension multitâche Le processus est encore manuel, mais nous travaillons sur son automatisation, avec le soutien de la communauté Hugging Face. @clem , on se prépare pour une mise à niveau de l’espace ? 😏👀 Ce n'est pas qu'une question de chiffres—il s'agit de créer une IA qui reflète vraiment notre langue, notre culture et nos valeurs. OpenLLMFrenchLeaderboard est notre contribution personnelle pour façonner l'avenir des LLM en France.
View all activity

Articles

Organizations

alielfilali01's activity

Reacted to vincentg64's post with 🧠 about 6 hours ago
view post
Post
410
There is no such thing as a Trained LLM https://mltblog.com/3CEJ9Pt

What I mean here is that traditional LLMs are trained on tasks irrelevant to what they will do for the user. It’s like training a plane to efficiently operate on the runway, but not to fly. In short, it is almost impossible to train an LLM, and evaluating is just as challenging. Then, training is not even necessary. In this article, I dive on all these topics.

➡️ Training LLMs for the wrong tasks

Since the beginnings with Bert, training an LLM typically consists of predicting the next tokens in a sentence, or removing some tokens and then have your algorithm fill the blanks. You optimize the underlying deep neural networks to perform these supervised learning tasks as well as possible. Typically, it involves growing the list of tokens in the training set to billions or trillions, increasing the cost and time to train. However, recently, there is a tendency to work with smaller datasets, by distilling the input sources and token lists. After all, out of one trillion tokens, 99% are noise and do not contribute to improving the results for the end-user; they may even contribute to hallucinations. Keep in mind that human beings have a vocabulary of about 30,000 keywords, and that the number of potential standardized prompts on a specialized corpus (and thus the number of potential answers) is less than a million.

➡️ Read the full articles at https://mltblog.com/3CEJ9Pt, also featuring issues with evaluation metrics and the benefits of untrained LLMs.
Reacted to malhajar's post with 🔥 3 days ago
view post
Post
3895
🇫🇷 Lancement officiel de l'OpenLLM French Leaderboard : initiative open-source pour référencer l’évaluation des LLMs francophones

Après beaucoup d’efforts et de sueurs avec Alexandre Lavallee, nous sommes ravis d’annoncer que le OpenLLMFrenchLeaderboard est en ligne sur Hugging Face (space url: le-leadboard/OpenLLMFrenchLeaderboard) la toute première plateforme dédiée à l’évaluation des grands modèles de langage (LLM) en français. 🇫🇷✨

Ce projet de longue haleine est avant tout une œuvre de passion mais surtout une nécessité absolue. Il devient urgent et vital d'oeuvrer à plus de transparence dans ce domaine stratégique des LLM dits multilingues. La première pièce à l'édifice est donc la mise en place d'une évaluation systématique et systémique des modèles actuels et futurs.

Votre modèle IA français est-il prêt à se démarquer ? Soumettez le dans notre espace, et voyez comment vous vous comparez par rapport aux autres modèles.

❓ Comment ça marche :
Soumettez votre LLM français pour évaluation, et nous le testerons sur des benchmarks de référence spécifiquement adaptés pour la langue française — notre suite de benchmarks comprend :

- BBH-fr : Raisonnement complexe
- IFEval-fr : Suivi d'instructions
- GPQA-fr : Connaissances avancées
- MUSR-fr : Raisonnement narratif
- MATH_LVL5-fr : Capacités mathématiques
- MMMLU-fr : Compréhension multitâche

Le processus est encore manuel, mais nous travaillons sur son automatisation, avec le soutien de la communauté Hugging Face.

@clem , on se prépare pour une mise à niveau de l’espace ? 😏👀

Ce n'est pas qu'une question de chiffres—il s'agit de créer une IA qui reflète vraiment notre langue, notre culture et nos valeurs. OpenLLMFrenchLeaderboard est notre contribution personnelle pour façonner l'avenir des LLM en France.
  • 1 reply
·
upvoted an article 3 days ago
Reacted to elliesleightholm's post with 🤗❤️ 3 days ago
upvoted an article 4 days ago
Reacted to LukeNeumann's post with 🤯 5 days ago
Reacted to monsoon-nlp's post with ❤️ 5 days ago
Reacted to m-ric's post with 🔥 5 days ago
view post
Post
1338
Great feature alert: 𝗬𝗼𝘂 𝗰𝗮𝗻 𝗻𝗼𝘄 𝘂𝘀𝗲 𝗮𝗻𝘆 𝗦𝗽𝗮𝗰𝗲 𝗮𝘀 𝗮 𝘁𝗼𝗼𝗹 𝗳𝗼𝗿 𝘆𝗼𝘂𝗿 𝘁𝗿𝗮𝗻𝘀𝗳𝗼𝗿𝗺𝗲𝗿𝘀.𝗮𝗴𝗲𝗻𝘁! 🛠️🔥🔥

This lets you take the coolest spaces, like FLUX.1-dev, and use them in agentic workflows with a few lines of code! 🧑‍💻

On the video below, I set up my fake vacation pictures where I'm awesome at surfing (I'm really not) 🏄

Head to the doc to learn this magic 👉 https://huggingface.co/docs/transformers/main/en/agents_advanced#import-a-space-as-a-tool-