wav2vec2-large-xlsr-coraa-exp-1

This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5564
  • Wer: 0.3555
  • Cer: 0.1821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
39.0927 1.0 14 30.0708 1.0 0.9613
39.0927 2.0 28 9.0585 1.0 0.9619
39.0927 3.0 42 4.9408 1.0 0.9619
39.0927 4.0 56 4.1247 1.0 0.9619
39.0927 5.0 70 3.8053 1.0 0.9619
39.0927 6.0 84 3.6257 1.0 0.9619
39.0927 7.0 98 3.4882 1.0 0.9619
10.1374 8.0 112 3.3658 1.0 0.9619
10.1374 9.0 126 3.2659 1.0 0.9619
10.1374 10.0 140 3.1858 1.0 0.9619
10.1374 11.0 154 3.1509 1.0 0.9619
10.1374 12.0 168 3.1087 1.0 0.9619
10.1374 13.0 182 3.0901 1.0 0.9619
10.1374 14.0 196 3.0563 1.0 0.9619
3.0936 15.0 210 3.0725 1.0 0.9619
3.0936 16.0 224 3.0693 1.0 0.9619
3.0936 17.0 238 3.0401 1.0 0.9619
3.0936 18.0 252 3.0363 1.0 0.9619
3.0936 19.0 266 3.0399 1.0 0.9619
3.0936 20.0 280 3.0229 1.0 0.9619
3.0936 21.0 294 3.0135 1.0 0.9619
2.9599 22.0 308 3.0165 1.0 0.9619
2.9599 23.0 322 3.0048 1.0 0.9619
2.9599 24.0 336 3.0040 1.0 0.9619
2.9599 25.0 350 2.9981 1.0 0.9619
2.9599 26.0 364 3.0019 1.0 0.9619
2.9599 27.0 378 2.9937 1.0 0.9619
2.9599 28.0 392 2.9919 1.0 0.9619
2.9236 29.0 406 2.9904 1.0 0.9619
2.9236 30.0 420 2.9829 1.0 0.9619
2.9236 31.0 434 2.9772 1.0 0.9619
2.9236 32.0 448 2.9296 1.0 0.9619
2.9236 33.0 462 2.9011 1.0 0.9619
2.9236 34.0 476 2.8410 1.0 0.9619
2.9236 35.0 490 2.7730 1.0 0.9619
2.8623 36.0 504 2.7076 1.0 0.9618
2.8623 37.0 518 2.6268 1.0 0.9590
2.8623 38.0 532 2.4435 1.0 0.8387
2.8623 39.0 546 2.1666 1.0 0.6899
2.8623 40.0 560 1.8675 1.0 0.5183
2.8623 41.0 574 1.5864 1.0 0.4389
2.8623 42.0 588 1.4232 0.9996 0.3989
2.1779 43.0 602 1.2338 0.9976 0.3828
2.1779 44.0 616 1.1252 0.9431 0.3392
2.1779 45.0 630 1.0542 0.7505 0.2762
2.1779 46.0 644 0.9471 0.5510 0.2287
2.1779 47.0 658 0.8948 0.5154 0.2230
2.1779 48.0 672 0.8252 0.5055 0.2195
2.1779 49.0 686 0.7892 0.4691 0.2086
1.0861 50.0 700 0.7734 0.4464 0.2053
1.0861 51.0 714 0.7450 0.4466 0.2057
1.0861 52.0 728 0.7445 0.4421 0.2054
1.0861 53.0 742 0.7073 0.4291 0.2007
1.0861 54.0 756 0.7187 0.4279 0.2016
1.0861 55.0 770 0.7030 0.4185 0.1996
1.0861 56.0 784 0.6911 0.4130 0.1973
1.0861 57.0 798 0.6678 0.4055 0.1953
0.715 58.0 812 0.6554 0.4072 0.1947
0.715 59.0 826 0.6637 0.4110 0.1960
0.715 60.0 840 0.6606 0.4037 0.1962
0.715 61.0 854 0.6598 0.4069 0.1969
0.715 62.0 868 0.6365 0.4023 0.1946
0.715 63.0 882 0.6275 0.3937 0.1928
0.715 64.0 896 0.6460 0.3925 0.1941
0.5672 65.0 910 0.6349 0.3939 0.1945
0.5672 66.0 924 0.6282 0.3933 0.1938
0.5672 67.0 938 0.6014 0.3872 0.1901
0.5672 68.0 952 0.6073 0.3854 0.1899
0.5672 69.0 966 0.6144 0.3862 0.1914
0.5672 70.0 980 0.6038 0.3860 0.1912
0.5672 71.0 994 0.6110 0.3836 0.1916
0.4622 72.0 1008 0.6022 0.3781 0.1891
0.4622 73.0 1022 0.5961 0.3775 0.1890
0.4622 74.0 1036 0.5991 0.3753 0.1885
0.4622 75.0 1050 0.5966 0.3732 0.1887
0.4622 76.0 1064 0.5963 0.3785 0.1897
0.4622 77.0 1078 0.5902 0.3816 0.1896
0.4622 78.0 1092 0.5695 0.3738 0.1864
0.4311 79.0 1106 0.5828 0.3765 0.1869
0.4311 80.0 1120 0.5799 0.3748 0.1871
0.4311 81.0 1134 0.5753 0.3746 0.1874
0.4311 82.0 1148 0.5795 0.3738 0.1876
0.4311 83.0 1162 0.5899 0.3726 0.1884
0.4311 84.0 1176 0.5791 0.3671 0.1864
0.4311 85.0 1190 0.5711 0.3649 0.1850
0.3905 86.0 1204 0.5771 0.3692 0.1857
0.3905 87.0 1218 0.5769 0.3657 0.1850
0.3905 88.0 1232 0.5681 0.3663 0.1846
0.3905 89.0 1246 0.5772 0.3653 0.1846
0.3905 90.0 1260 0.5658 0.3623 0.1835
0.3905 91.0 1274 0.5706 0.3653 0.1853
0.3905 92.0 1288 0.5735 0.3600 0.1838
0.3626 93.0 1302 0.5607 0.3598 0.1833
0.3626 94.0 1316 0.5736 0.3610 0.1839
0.3626 95.0 1330 0.5701 0.3604 0.1847
0.3626 96.0 1344 0.5775 0.3637 0.1856
0.3626 97.0 1358 0.5564 0.3555 0.1821
0.3626 98.0 1372 0.5770 0.3580 0.1839
0.3626 99.0 1386 0.5692 0.3584 0.1831
0.3218 100.0 1400 0.5748 0.3582 0.1831
0.3218 101.0 1414 0.5647 0.3553 0.1822
0.3218 102.0 1428 0.5756 0.3584 0.1831
0.3218 103.0 1442 0.5739 0.3590 0.1833
0.3218 104.0 1456 0.5663 0.3586 0.1828
0.3218 105.0 1470 0.5631 0.3602 0.1829
0.3218 106.0 1484 0.5747 0.3616 0.1838
0.3218 107.0 1498 0.5691 0.3590 0.1838
0.3032 108.0 1512 0.5573 0.3582 0.1829
0.3032 109.0 1526 0.5605 0.3570 0.1834
0.3032 110.0 1540 0.5719 0.3568 0.1838
0.3032 111.0 1554 0.5595 0.3568 0.1826
0.3032 112.0 1568 0.5614 0.3570 0.1825
0.3032 113.0 1582 0.5676 0.3566 0.1832
0.3032 114.0 1596 0.5715 0.3572 0.1834
0.2957 115.0 1610 0.5735 0.3584 0.1831
0.2957 116.0 1624 0.5706 0.3588 0.1833
0.2957 117.0 1638 0.5708 0.3551 0.1828

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.