wav2vec2-large-xlsr-coraa-exp-2

This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7598
  • Wer: 0.4437
  • Cer: 0.2059

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
37.4939 1.0 14 27.8472 1.0 0.9612
37.4939 2.0 28 7.8236 1.0 0.9619
37.4939 3.0 42 4.5483 1.0 0.9619
37.4939 4.0 56 3.9455 1.0 0.9619
37.4939 5.0 70 3.6981 1.0 0.9619
37.4939 6.0 84 3.5551 1.0 0.9619
37.4939 7.0 98 3.4345 1.0 0.9619
9.4755 8.0 112 3.3129 1.0 0.9619
9.4755 9.0 126 3.2352 1.0 0.9619
9.4755 10.0 140 3.1795 1.0 0.9619
9.4755 11.0 154 3.1330 1.0 0.9619
9.4755 12.0 168 3.1329 1.0 0.9619
9.4755 13.0 182 3.0781 1.0 0.9619
9.4755 14.0 196 3.0682 1.0 0.9619
3.0804 15.0 210 3.0734 1.0 0.9619
3.0804 16.0 224 3.0565 1.0 0.9619
3.0804 17.0 238 3.0534 1.0 0.9619
3.0804 18.0 252 3.0327 1.0 0.9619
3.0804 19.0 266 3.0382 1.0 0.9619
3.0804 20.0 280 3.0320 1.0 0.9619
3.0804 21.0 294 3.0175 1.0 0.9619
2.9645 22.0 308 3.0184 1.0 0.9619
2.9645 23.0 322 3.0053 1.0 0.9619
2.9645 24.0 336 3.0082 1.0 0.9619
2.9645 25.0 350 3.0016 1.0 0.9619
2.9645 26.0 364 3.0093 1.0 0.9619
2.9645 27.0 378 2.9993 1.0 0.9619
2.9645 28.0 392 2.9998 1.0 0.9619
2.9326 29.0 406 3.0039 1.0 0.9619
2.9326 30.0 420 3.0013 1.0 0.9619
2.9326 31.0 434 2.9991 1.0 0.9619
2.9326 32.0 448 2.9949 1.0 0.9619
2.9326 33.0 462 2.9920 1.0 0.9619
2.9326 34.0 476 2.9980 1.0 0.9619
2.9326 35.0 490 2.9905 1.0 0.9619
2.9228 36.0 504 2.9935 1.0 0.9619
2.9228 37.0 518 2.9859 1.0 0.9619
2.9228 38.0 532 2.9879 1.0 0.9619
2.9228 39.0 546 2.9838 1.0 0.9619
2.9228 40.0 560 2.9819 1.0 0.9619
2.9228 41.0 574 2.9832 1.0 0.9619
2.9228 42.0 588 2.9748 1.0 0.9619
2.9107 43.0 602 2.9705 1.0 0.9616
2.9107 44.0 616 2.9658 1.0 0.9591
2.9107 45.0 630 2.9676 1.0 0.9580
2.9107 46.0 644 2.9602 1.0 0.9617
2.9107 47.0 658 2.9288 1.0 0.9581
2.9107 48.0 672 2.9023 1.0 0.9564
2.9107 49.0 686 2.8598 1.0 0.9601
2.8675 50.0 700 2.8022 1.0 0.9617
2.8675 51.0 714 2.7749 1.0 0.9559
2.8675 52.0 728 2.7368 1.0 0.9614
2.8675 53.0 742 2.6779 1.0 0.9597
2.8675 54.0 756 2.6466 1.0 0.9513
2.8675 55.0 770 2.6083 1.0 0.9381
2.8675 56.0 784 2.5400 1.0 0.9046
2.8675 57.0 798 2.4022 1.0 0.8121
2.6433 58.0 812 2.2463 1.0 0.7267
2.6433 59.0 826 2.0689 1.0 0.6162
2.6433 60.0 840 1.9145 1.0 0.5704
2.6433 61.0 854 1.7756 1.0 0.5095
2.6433 62.0 868 1.6238 1.0 0.4700
2.6433 63.0 882 1.4970 1.0 0.4454
2.6433 64.0 896 1.4010 1.0 0.4264
2.0023 65.0 910 1.3292 1.0 0.4142
2.0023 66.0 924 1.2790 0.9996 0.4043
2.0023 67.0 938 1.2129 0.9972 0.3898
2.0023 68.0 952 1.1590 0.9937 0.3795
2.0023 69.0 966 1.1193 0.9793 0.3618
2.0023 70.0 980 1.0872 0.9567 0.3482
2.0023 71.0 994 1.0603 0.9025 0.3278
1.3694 72.0 1008 1.0181 0.8694 0.3145
1.3694 73.0 1022 0.9941 0.8249 0.3000
1.3694 74.0 1036 0.9689 0.7082 0.2688
1.3694 75.0 1050 0.9346 0.6274 0.2466
1.3694 76.0 1064 0.9144 0.5603 0.2331
1.3694 77.0 1078 0.8997 0.5238 0.2253
1.3694 78.0 1092 0.8630 0.5154 0.2227
1.0996 79.0 1106 0.8602 0.4974 0.2171
1.0996 80.0 1120 0.8447 0.4911 0.2166
1.0996 81.0 1134 0.8308 0.4890 0.2164
1.0996 82.0 1148 0.8408 0.4781 0.2146
1.0996 83.0 1162 0.8201 0.4732 0.2128
1.0996 84.0 1176 0.8140 0.4711 0.2120
1.0996 85.0 1190 0.8041 0.4655 0.2105
0.9419 86.0 1204 0.7987 0.4616 0.2104
0.9419 87.0 1218 0.7883 0.4588 0.2092
0.9419 88.0 1232 0.7889 0.4581 0.2093
0.9419 89.0 1246 0.7859 0.4553 0.2088
0.9419 90.0 1260 0.7796 0.4508 0.2079
0.9419 91.0 1274 0.7814 0.4496 0.2081
0.9419 92.0 1288 0.7753 0.4482 0.2079
0.8707 93.0 1302 0.7674 0.4480 0.2068
0.8707 94.0 1316 0.7664 0.4474 0.2065
0.8707 95.0 1330 0.7612 0.4478 0.2063
0.8707 96.0 1344 0.7640 0.4441 0.2062
0.8707 97.0 1358 0.7598 0.4437 0.2059
0.8707 98.0 1372 0.7621 0.4427 0.2058
0.8707 99.0 1386 0.7634 0.4427 0.2059
0.8144 100.0 1400 0.7631 0.4425 0.2059

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.