wav2vec2-large-xlsr-coraa-exp-3

This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6735
  • Wer: 0.4171
  • Cer: 0.1973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
36.864 1.0 14 23.1058 1.0 0.9617
36.864 2.0 28 6.7821 1.0 0.9619
36.864 3.0 42 4.4729 1.0 0.9619
36.864 4.0 56 3.9256 1.0 0.9619
36.864 5.0 70 3.6910 1.0 0.9619
36.864 6.0 84 3.5482 1.0 0.9619
36.864 7.0 98 3.4159 1.0 0.9619
8.8097 8.0 112 3.3477 1.0 0.9619
8.8097 9.0 126 3.2437 1.0 0.9619
8.8097 10.0 140 3.1897 1.0 0.9619
8.8097 11.0 154 3.1493 1.0 0.9619
8.8097 12.0 168 3.1030 1.0 0.9619
8.8097 13.0 182 3.0839 1.0 0.9619
8.8097 14.0 196 3.0636 1.0 0.9619
3.0836 15.0 210 3.0740 1.0 0.9619
3.0836 16.0 224 3.0493 1.0 0.9619
3.0836 17.0 238 3.0592 1.0 0.9619
3.0836 18.0 252 3.0454 1.0 0.9619
3.0836 19.0 266 3.0413 1.0 0.9619
3.0836 20.0 280 3.0225 1.0 0.9619
3.0836 21.0 294 3.0180 1.0 0.9619
2.962 22.0 308 3.0182 1.0 0.9619
2.962 23.0 322 3.0088 1.0 0.9619
2.962 24.0 336 3.0045 1.0 0.9619
2.962 25.0 350 3.0062 1.0 0.9619
2.962 26.0 364 3.0002 1.0 0.9619
2.962 27.0 378 3.0015 1.0 0.9619
2.962 28.0 392 2.9998 1.0 0.9619
2.9296 29.0 406 2.9963 1.0 0.9619
2.9296 30.0 420 2.9960 1.0 0.9619
2.9296 31.0 434 2.9941 1.0 0.9619
2.9296 32.0 448 2.9875 1.0 0.9619
2.9296 33.0 462 2.9809 1.0 0.9619
2.9296 34.0 476 2.9867 1.0 0.9619
2.9296 35.0 490 2.9806 1.0 0.9619
2.9173 36.0 504 2.9788 1.0 0.9619
2.9173 37.0 518 2.9758 1.0 0.9613
2.9173 38.0 532 2.9576 1.0 0.9573
2.9173 39.0 546 2.9418 1.0 0.9567
2.9173 40.0 560 2.9332 1.0 0.9513
2.9173 41.0 574 2.8844 1.0 0.9505
2.9173 42.0 588 2.8447 1.0 0.9594
2.8677 43.0 602 2.7853 1.0 0.9609
2.8677 44.0 616 2.7609 1.0 0.9611
2.8677 45.0 630 2.7352 1.0 0.9560
2.8677 46.0 644 2.6978 1.0 0.9458
2.8677 47.0 658 2.6429 1.0 0.9091
2.8677 48.0 672 2.4628 1.0 0.7621
2.8677 49.0 686 2.2944 1.0 0.7007
2.5853 50.0 700 2.1218 1.0 0.6241
2.5853 51.0 714 1.9631 1.0 0.5478
2.5853 52.0 728 1.7663 1.0 0.4962
2.5853 53.0 742 1.6149 1.0 0.4384
2.5853 54.0 756 1.5029 1.0 0.4164
2.5853 55.0 770 1.4372 0.9998 0.4015
2.5853 56.0 784 1.3467 0.9992 0.3944
2.5853 57.0 798 1.2405 0.9961 0.3846
1.8208 58.0 812 1.1700 0.9898 0.3715
1.8208 59.0 826 1.1102 0.9807 0.3599
1.8208 60.0 840 1.0782 0.9606 0.3472
1.8208 61.0 854 1.0312 0.9350 0.3325
1.8208 62.0 868 0.9807 0.8935 0.3137
1.8208 63.0 882 0.9468 0.7877 0.2842
1.8208 64.0 896 0.9241 0.6071 0.2397
1.2338 65.0 910 0.9088 0.5173 0.2245
1.2338 66.0 924 0.8704 0.5136 0.2231
1.2338 67.0 938 0.8294 0.4935 0.2174
1.2338 68.0 952 0.8129 0.4803 0.2133
1.2338 69.0 966 0.8117 0.4616 0.2106
1.2338 70.0 980 0.7918 0.4559 0.2091
1.2338 71.0 994 0.7759 0.4502 0.2068
0.9426 72.0 1008 0.7622 0.4496 0.2072
0.9426 73.0 1022 0.7588 0.4439 0.2055
0.9426 74.0 1036 0.7419 0.4423 0.2044
0.9426 75.0 1050 0.7495 0.4344 0.2030
0.9426 76.0 1064 0.7344 0.4321 0.2024
0.9426 77.0 1078 0.7324 0.4325 0.2028
0.9426 78.0 1092 0.7141 0.4311 0.2015
0.8254 79.0 1106 0.7201 0.4291 0.2010
0.8254 80.0 1120 0.7149 0.4279 0.2007
0.8254 81.0 1134 0.6996 0.4226 0.1991
0.8254 82.0 1148 0.7043 0.4204 0.1985
0.8254 83.0 1162 0.6972 0.4195 0.1980
0.8254 84.0 1176 0.6973 0.4187 0.1981
0.8254 85.0 1190 0.6902 0.4218 0.1986
0.7519 86.0 1204 0.6910 0.4212 0.1980
0.7519 87.0 1218 0.6867 0.4204 0.1980
0.7519 88.0 1232 0.6844 0.4187 0.1978
0.7519 89.0 1246 0.6873 0.4163 0.1976
0.7519 90.0 1260 0.6771 0.4165 0.1968
0.7519 91.0 1274 0.6828 0.4161 0.1975
0.7519 92.0 1288 0.6806 0.4159 0.1974
0.7161 93.0 1302 0.6787 0.4149 0.1970
0.7161 94.0 1316 0.6768 0.4161 0.1971
0.7161 95.0 1330 0.6735 0.4171 0.1973
0.7161 96.0 1344 0.6771 0.4159 0.1973
0.7161 97.0 1358 0.6747 0.4155 0.1969
0.7161 98.0 1372 0.6761 0.4161 0.1971
0.7161 99.0 1386 0.6769 0.4167 0.1973
0.6707 100.0 1400 0.6766 0.4153 0.1969

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.