wav2vec2-large-xlsr-coraa-exp-6

This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5587
  • Wer: 0.3549
  • Cer: 0.1821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
38.8729 1.0 14 29.8196 1.0 0.9615
38.8729 2.0 28 9.8857 1.0 0.9619
38.8729 3.0 42 5.0224 1.0 0.9619
38.8729 4.0 56 4.1451 1.0 0.9619
38.8729 5.0 70 3.8275 1.0 0.9619
38.8729 6.0 84 3.6444 1.0 0.9619
38.8729 7.0 98 3.5199 1.0 0.9619
10.2228 8.0 112 3.4075 1.0 0.9619
10.2228 9.0 126 3.2890 1.0 0.9619
10.2228 10.0 140 3.2052 1.0 0.9619
10.2228 11.0 154 3.1952 1.0 0.9619
10.2228 12.0 168 3.1434 1.0 0.9619
10.2228 13.0 182 3.1563 1.0 0.9619
10.2228 14.0 196 3.1021 1.0 0.9619
3.1118 15.0 210 3.0893 1.0 0.9619
3.1118 16.0 224 3.0649 1.0 0.9619
3.1118 17.0 238 3.0773 1.0 0.9619
3.1118 18.0 252 3.0653 1.0 0.9619
3.1118 19.0 266 3.0556 1.0 0.9619
3.1118 20.0 280 3.0357 1.0 0.9619
3.1118 21.0 294 3.0212 1.0 0.9619
2.9669 22.0 308 3.0193 1.0 0.9619
2.9669 23.0 322 3.0091 1.0 0.9619
2.9669 24.0 336 3.0074 1.0 0.9619
2.9669 25.0 350 3.0022 1.0 0.9619
2.9669 26.0 364 3.0021 1.0 0.9619
2.9669 27.0 378 3.0017 1.0 0.9619
2.9669 28.0 392 2.9958 1.0 0.9619
2.9277 29.0 406 3.0000 1.0 0.9619
2.9277 30.0 420 2.9948 1.0 0.9619
2.9277 31.0 434 2.9936 1.0 0.9619
2.9277 32.0 448 2.9882 1.0 0.9619
2.9277 33.0 462 2.9866 1.0 0.9619
2.9277 34.0 476 2.9898 1.0 0.9619
2.9277 35.0 490 2.9887 1.0 0.9619
2.9186 36.0 504 2.9847 1.0 0.9619
2.9186 37.0 518 2.9852 1.0 0.9619
2.9186 38.0 532 2.9846 1.0 0.9619
2.9186 39.0 546 2.9766 1.0 0.9619
2.9186 40.0 560 2.9774 1.0 0.9619
2.9186 41.0 574 2.9617 1.0 0.9619
2.9186 42.0 588 2.9321 1.0 0.9619
2.8987 43.0 602 2.8981 1.0 0.9619
2.8987 44.0 616 2.8334 1.0 0.9619
2.8987 45.0 630 2.7951 1.0 0.9619
2.8987 46.0 644 2.7475 1.0 0.9619
2.8987 47.0 658 2.6645 1.0 0.9527
2.8987 48.0 672 2.6282 1.0 0.9541
2.8987 49.0 686 2.4763 1.0 0.8417
2.6692 50.0 700 2.2491 1.0 0.6703
2.6692 51.0 714 2.0035 1.0 0.5842
2.6692 52.0 728 1.7479 1.0 0.4960
2.6692 53.0 742 1.5238 1.0 0.4234
2.6692 54.0 756 1.3688 1.0 0.4067
2.6692 55.0 770 1.2722 0.9994 0.3967
2.6692 56.0 784 1.1672 0.9967 0.3818
2.6692 57.0 798 1.0985 0.8992 0.3311
1.6908 58.0 812 1.0185 0.8799 0.3196
1.6908 59.0 826 0.9546 0.8033 0.2906
1.6908 60.0 840 0.8950 0.6337 0.2470
1.6908 61.0 854 0.8433 0.5293 0.2234
1.6908 62.0 868 0.8039 0.4925 0.2156
1.6908 63.0 882 0.7747 0.4754 0.2117
1.6908 64.0 896 0.7777 0.4569 0.2091
0.9571 65.0 910 0.7666 0.4516 0.2074
0.9571 66.0 924 0.7772 0.4429 0.2072
0.9571 67.0 938 0.7258 0.4315 0.2026
0.9571 68.0 952 0.7159 0.4236 0.2013
0.9571 69.0 966 0.6914 0.4256 0.2006
0.9571 70.0 980 0.6768 0.4163 0.1992
0.9571 71.0 994 0.6966 0.4094 0.1981
0.6701 72.0 1008 0.6756 0.4108 0.1974
0.6701 73.0 1022 0.6746 0.4051 0.1964
0.6701 74.0 1036 0.6620 0.4007 0.1956
0.6701 75.0 1050 0.6627 0.4031 0.1957
0.6701 76.0 1064 0.6529 0.4007 0.1963
0.6701 77.0 1078 0.6478 0.3974 0.1947
0.6701 78.0 1092 0.6381 0.4017 0.1947
0.5683 79.0 1106 0.6425 0.3944 0.1935
0.5683 80.0 1120 0.6374 0.3917 0.1931
0.5683 81.0 1134 0.6219 0.3862 0.1911
0.5683 82.0 1148 0.6318 0.3854 0.1914
0.5683 83.0 1162 0.6325 0.3895 0.1933
0.5683 84.0 1176 0.6222 0.3852 0.1913
0.5683 85.0 1190 0.6149 0.3818 0.1897
0.4891 86.0 1204 0.6181 0.3805 0.1899
0.4891 87.0 1218 0.6089 0.3769 0.1889
0.4891 88.0 1232 0.6029 0.3748 0.1885
0.4891 89.0 1246 0.5954 0.3751 0.1872
0.4891 90.0 1260 0.5977 0.3755 0.1864
0.4891 91.0 1274 0.6000 0.3722 0.1873
0.4891 92.0 1288 0.5896 0.3740 0.1876
0.44 93.0 1302 0.5874 0.3781 0.1884
0.44 94.0 1316 0.5871 0.3716 0.1870
0.44 95.0 1330 0.5927 0.3740 0.1872
0.44 96.0 1344 0.6053 0.3755 0.1884
0.44 97.0 1358 0.5858 0.3718 0.1863
0.44 98.0 1372 0.5933 0.3736 0.1869
0.44 99.0 1386 0.5861 0.3722 0.1859
0.3835 100.0 1400 0.5969 0.3742 0.1872
0.3835 101.0 1414 0.5779 0.3681 0.1856
0.3835 102.0 1428 0.5938 0.3732 0.1872
0.3835 103.0 1442 0.5759 0.3663 0.1850
0.3835 104.0 1456 0.5893 0.3714 0.1876
0.3835 105.0 1470 0.5816 0.3665 0.1857
0.3835 106.0 1484 0.5775 0.3659 0.1860
0.3835 107.0 1498 0.5809 0.3704 0.1868
0.3613 108.0 1512 0.5722 0.3635 0.1854
0.3613 109.0 1526 0.5721 0.3623 0.1847
0.3613 110.0 1540 0.5774 0.3610 0.1847
0.3613 111.0 1554 0.5723 0.3631 0.1842
0.3613 112.0 1568 0.5748 0.3588 0.1837
0.3613 113.0 1582 0.5801 0.3623 0.1841
0.3613 114.0 1596 0.5773 0.3614 0.1838
0.3396 115.0 1610 0.5742 0.3623 0.1845
0.3396 116.0 1624 0.5832 0.3604 0.1848
0.3396 117.0 1638 0.5818 0.3592 0.1852
0.3396 118.0 1652 0.5700 0.3560 0.1836
0.3396 119.0 1666 0.5796 0.3608 0.1846
0.3396 120.0 1680 0.5706 0.3578 0.1837
0.3396 121.0 1694 0.5750 0.3584 0.1842
0.3327 122.0 1708 0.5764 0.3580 0.1842
0.3327 123.0 1722 0.5690 0.3551 0.1834
0.3327 124.0 1736 0.5587 0.3549 0.1821
0.3327 125.0 1750 0.5637 0.3543 0.1827
0.3327 126.0 1764 0.5634 0.3543 0.1823
0.3327 127.0 1778 0.5625 0.3531 0.1817
0.3327 128.0 1792 0.5737 0.3545 0.1826
0.3237 129.0 1806 0.5653 0.3539 0.1817
0.3237 130.0 1820 0.5671 0.3545 0.1824
0.3237 131.0 1834 0.5711 0.3549 0.1823
0.3237 132.0 1848 0.5682 0.3533 0.1819
0.3237 133.0 1862 0.5685 0.3545 0.1829
0.3237 134.0 1876 0.5662 0.3539 0.1826
0.3237 135.0 1890 0.5706 0.3535 0.1827
0.3038 136.0 1904 0.5678 0.3539 0.1821
0.3038 137.0 1918 0.5648 0.3543 0.1823
0.3038 138.0 1932 0.5638 0.3539 0.1819
0.3038 139.0 1946 0.5689 0.3541 0.1823
0.3038 140.0 1960 0.5710 0.3541 0.1825
0.3038 141.0 1974 0.5648 0.3533 0.1821
0.3038 142.0 1988 0.5656 0.3533 0.1820
0.2933 143.0 2002 0.5654 0.3539 0.1825
0.2933 144.0 2016 0.5667 0.3529 0.1828

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.