wav2vec2-large-xlsr-mecita-coraa-portuguese-random-all-02

This model is a fine-tuned version of jonatasgrosman/wav2vec2-xls-r-1b-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2941
  • Wer: 0.1192
  • Cer: 0.0385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
26.6237 1.0 86 2.7490 0.9342 0.7322
5.3366 2.0 172 1.6394 0.7008 0.4202
3.393 3.0 258 1.0152 0.4928 0.2308
2.1045 4.0 344 0.6938 0.3511 0.1511
1.8687 5.0 430 0.5804 0.2975 0.1133
1.0808 6.0 516 0.4939 0.2553 0.0986
0.9453 7.0 602 0.4599 0.2317 0.0858
0.9453 8.0 688 0.4172 0.2139 0.0739
0.7718 9.0 774 0.3793 0.1807 0.0622
0.72 10.0 860 0.4070 0.1814 0.0636
0.4718 11.0 946 0.4255 0.1644 0.0570
0.5514 12.0 1032 0.3529 0.1526 0.0511
0.3473 13.0 1118 0.3458 0.1529 0.0505
0.4885 14.0 1204 0.3217 0.1444 0.0496
0.4885 15.0 1290 0.3107 0.1448 0.0480
0.3774 16.0 1376 0.4008 0.1461 0.0488
0.3974 17.0 1462 0.3857 0.1519 0.0501
0.3398 18.0 1548 0.3497 0.1309 0.0422
0.2741 19.0 1634 0.3150 0.1312 0.0426
0.2805 20.0 1720 0.3533 0.1236 0.0405
0.3292 21.0 1806 0.3227 0.1278 0.0424
0.3292 22.0 1892 0.2969 0.1295 0.0416
0.2255 23.0 1978 0.2941 0.1192 0.0385
0.2107 24.0 2064 0.3290 0.1261 0.0421
0.1922 25.0 2150 0.3492 0.1222 0.0399
0.1829 26.0 2236 0.3640 0.1173 0.0383
0.1911 27.0 2322 0.3595 0.1224 0.0396
0.1712 28.0 2408 0.3521 0.1219 0.0390
0.1712 29.0 2494 0.3313 0.1136 0.0374
0.1708 30.0 2580 0.3219 0.1207 0.0381
0.1389 31.0 2666 0.3261 0.1114 0.0361
0.1516 32.0 2752 0.3446 0.1102 0.0359
0.2601 33.0 2838 0.3505 0.1151 0.0367
0.1392 34.0 2924 0.3282 0.1131 0.0367
0.1286 35.0 3010 0.3351 0.1129 0.0359
0.1286 36.0 3096 0.3482 0.1119 0.0357
0.1497 37.0 3182 0.3762 0.1156 0.0373
0.1319 38.0 3268 0.3733 0.1149 0.0373
0.1294 39.0 3354 0.3463 0.1178 0.0372
0.1459 40.0 3440 0.3440 0.1146 0.0378
0.0998 41.0 3526 0.3467 0.1131 0.0366
0.1036 42.0 3612 0.3225 0.1127 0.0362
0.1036 43.0 3698 0.3630 0.1105 0.0351

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.