|
--- |
|
license: apache-2.0 |
|
tags: |
|
- image-classification |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
widget: |
|
- src: https://huggingface.co/alkzar90/croupier-creature-classifier/resolve/main/examples/crusader_peco_peco.png |
|
example_title: Crusader-Rangarok-Online |
|
- src: https://huggingface.co/alkzar90/croupier-creature-classifier/resolve/main/examples/goblin_wow.png |
|
example_title: Goblin-WoW |
|
- src: https://huggingface.co/alkzar90/croupier-creature-classifier/resolve/main/examples/dobby_harry_potter.jpg |
|
example_title: Dobby-Harry-Potter |
|
- src: https://huggingface.co/alkzar90/croupier-creature-classifier/resolve/main/examples/resident_evil_nemesis.jpeg |
|
example_title: Nemesis-Resident-Evil |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: croupier-creature-classifier |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: croupier-mtg-dataset |
|
type: imagefolder |
|
config: alkzar90--croupier-mtg-dataset |
|
split: train |
|
args: alkzar90--croupier-mtg-dataset |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7471264367816092 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# croupier-creature-classifier |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the croupier-mtg-dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7583 |
|
- Accuracy: 0.7471 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.6663 | 1.1 | 100 | 1.0179 | 0.5941 | |
|
| 0.4924 | 2.2 | 200 | 0.7036 | 0.7529 | |
|
| 0.4552 | 3.3 | 300 | 0.6123 | 0.7824 | |
|
| 0.2355 | 4.4 | 400 | 0.5748 | 0.7647 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|