File size: 4,012 Bytes
06e3959 6953ff8 06e3959 6953ff8 06e3959 6953ff8 06e3959 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
language: pl
---
# HerBERT
**[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** is a BERT-based Language Model trained on Polish Corpora
using only MLM objective with dynamic masking of whole words. For more details, please refer to:
[KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://arxiv.org/abs/2005.00630).
## Dataset
**HerBERT** training dataset is a combination of several publicly available corpora for Polish language:
| Corpus | Tokens | Texts |
| :------ | ------: | ------: |
| [OSCAR](https://traces1.inria.fr/oscar/)| 6710M | 145M |
| [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1084M | 1.1M |
| [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.5M |
| [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k |
| [Allegro Articles](https://allegro.pl/artykuly) | 18M | 33k |
## Tokenizer
The training dataset was tokenized into subwords using [HerBERT Tokenizer](https://huggingface.co/allegro/herbert-klej-cased-tokenizer-v1); a character level byte-pair encoding with
a vocabulary size of 50k tokens. The tokenizer itself was trained on [Wolne Lektury](https://wolnelektury.pl/) and a publicly available subset of
[National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=0) with a [fastBPE](https://github.com/glample/fastBPE) library.
Tokenizer utilizes `XLMTokenizer` implementation for that reason, one should load it as `allegro/herbert-klej-cased-tokenizer-v1`.
## HerBERT models summary
| Model | WWM | Cased | Tokenizer | Vocab Size | Batch Size | Train Steps |
| :------ | ------: | ------: | ------: | ------: | ------: | ------: |
| herbert-klej-cased-v1 | YES | YES | BPE | 50K | 570 | 180k |
## Model evaluation
HerBERT was evaluated on the [KLEJ](https://klejbenchmark.com/) benchmark, publicly available set of nine evaluation tasks for the Polish language understanding.
It had the best average performance and obtained the best results for three of them.
| Model | Average | NKJP-NER | CDSC-E | CDSC-R | CBD | PolEmo2.0-IN\t|PolEmo2.0-OUT | DYK | PSC | AR\t|
| :------ | ------: | ------: | ------: | ------: | ------: | ------: | ------: | ------: | ------: | ------: |
| herbert-klej-cased-v1 | **80.5** | 92.7 | 92.5 | 91.9 | **50.3** | **89.2** |**76.3** |52.1 |95.3 | 84.5 |
Full leaderboard is available [online](https://klejbenchmark.com/leaderboard).
## HerBERT usage
Model training and experiments were conducted with [transformers](https://github.com/huggingface/transformers) in version 2.0.
Example code:
```python
from transformers import XLMTokenizer, RobertaModel
tokenizer = XLMTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1")
model = RobertaModel.from_pretrained("allegro/herbert-klej-cased-v1")
encoded_input = tokenizer.encode("Kto ma lepszą sztukę, ma lepszy rząd – to jasne.", return_tensors='pt')
outputs = model(encoded_input)
```
HerBERT can also be loaded using `AutoTokenizer` and `AutoModel`:
```python
tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1")
model = AutoModel.from_pretrained("allegro/herbert-klej-cased-v1")
```
## License
CC BY-SA 4.0
## Citation
If you use this model, please cite the following paper:
```
@inproceedings{rybak-etal-2020-klej,
title = "{KLEJ}: Comprehensive Benchmark for {P}olish Language Understanding",
author = "Rybak, Piotr and
Mroczkowski, Robert and
Tracz, Janusz and
Gawlik, Ireneusz",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.111",
doi = "10.18653/v1/2020.acl-main.111",
pages = "1191--1201",
}
```
## Authors
The model was trained by **Allegro Machine Learning Research** team.
You can contact us at: <a href="mailto:klejbenchmark@allegro.pl">klejbenchmark@allegro.pl</a>
|