YAML Metadata Error: "widget[0]" must be of type object
YAML Metadata Error: "widget[1]" must be of type object
YAML Metadata Error: "widget[2]" must be of type object

ner_column_TQ

This model is a fine-tuned version of Gladiator/microsoft-deberta-v3-large_ner_conll2003 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1949
  • Precision: 0.8546
  • Recall: 0.8533
  • F1: 0.8540
  • Accuracy: 0.9154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 702 0.2342 0.7774 0.7496 0.7632 0.8833
0.369 2.0 1404 0.1708 0.8050 0.8048 0.8049 0.9033
0.1681 3.0 2106 0.1646 0.8007 0.8078 0.8043 0.9054
0.1681 4.0 2808 0.1469 0.8250 0.8335 0.8292 0.9133
0.14 5.0 3510 0.1465 0.8235 0.8345 0.8290 0.9137
0.1279 6.0 4212 0.1517 0.8165 0.8323 0.8244 0.9127
0.1279 7.0 4914 0.1474 0.8224 0.8370 0.8297 0.9138
0.1212 8.0 5616 0.1500 0.8255 0.8409 0.8331 0.9141
0.1165 9.0 6318 0.1545 0.8297 0.8390 0.8343 0.9142
0.1138 10.0 7020 0.1590 0.8342 0.8467 0.8404 0.9150
0.1138 11.0 7722 0.1588 0.8383 0.8474 0.8428 0.9156
0.1099 12.0 8424 0.1547 0.8425 0.8446 0.8435 0.9156
0.1071 13.0 9126 0.1565 0.8475 0.8471 0.8473 0.9164
0.1071 14.0 9828 0.1625 0.8440 0.8489 0.8464 0.9156
0.1031 15.0 10530 0.1680 0.8486 0.8510 0.8498 0.9160
0.0992 16.0 11232 0.1722 0.8529 0.8505 0.8517 0.9156
0.0992 17.0 11934 0.1771 0.8527 0.8529 0.8528 0.9159
0.094 18.0 12636 0.1862 0.8555 0.8531 0.8543 0.9159
0.0892 19.0 13338 0.1884 0.8534 0.8534 0.8534 0.9156
0.086 20.0 14040 0.1949 0.8546 0.8533 0.8540 0.9154

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
32
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for almaghrabima/ner_column_TQ

Finetuned
(2)
this model