metadata
license: mit
model-index:
- name: blockchainlabs_tinyllama_fusion_LHK_yunkong_v2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 34.9
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 63.11
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.75
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 37.33
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.14
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.76
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2
name: Open LLM Leaderboard
This model is based on the fusion strategy offered by Fanqi Wan(https://github.com/fanqiwan/FuseLLM).
Three models are fused together. 10epochs
Base model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
Blending model 1: HanNayeoniee/LHK_DPO_v1
Blending model 2: yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B
This model will be optimized by Laser and DPO later.
This project is to make the on-device sLM. We are doing experiments on the models.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 36.67 |
AI2 Reasoning Challenge (25-Shot) | 34.90 |
HellaSwag (10-Shot) | 63.11 |
MMLU (5-Shot) | 26.75 |
TruthfulQA (0-shot) | 37.33 |
Winogrande (5-shot) | 57.14 |
GSM8k (5-shot) | 0.76 |