|
--- |
|
language: sw |
|
datasets: |
|
- ALFFA,Gamayun & IWSLT |
|
|
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: Swahili XLSR-53 Wav2Vec2.0 Large |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: ALFFA sw |
|
args: sw |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: WIP |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Swahili |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Swahili using the following datasets: |
|
- [ALFFA](http://www.openslr.org/25/), |
|
- [Gamayun](https://gamayun.translatorswb.org/download/gamayun-5k-english-swahili/) |
|
- [IWSLT](https://iwslt.org/2021/low-resource) |
|
|
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
|
|
processor = Wav2Vec2Processor.from_pretrained("alokmatta/wav2vec2-large-xlsr-53-sw") |
|
|
|
model = Wav2Vec2ForCTC.from_pretrained("alokmatta/wav2vec2-large-xlsr-53-sw").to("cuda") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) |
|
|
|
def load_file_to_data(file): |
|
batch = {} |
|
speech, _ = torchaudio.load(file) |
|
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() |
|
batch["sampling_rate"] = resampler.new_freq |
|
return batch |
|
|
|
|
|
def predict(data): |
|
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt") |
|
input_values = features.input_values.to("cuda") |
|
attention_mask = features.attention_mask.to("cuda") |
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
pred_ids = torch.argmax(logits, dim=-1) |
|
return processor.batch_decode(pred_ids) |
|
|
|
predict(load_file_to_data('./demo.wav')) |
|
``` |
|
|
|
**Test Result**: 40 % |
|
|
|
|
|
## Training |
|
|
|
|
|
The script used for training can be found [here](https://colab.research.google.com/drive/1_RL6TQv_Yiu_xbWXu4ycbzdCdXCqEQYU?usp=sharing) |