product-review-information-density-detection-distilbert
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2972
- Accuracy: 0.8387
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 67 | 0.5551 | 0.7438 |
No log | 2.0 | 134 | 0.4422 | 0.8163 |
No log | 3.0 | 201 | 0.4285 | 0.84 |
No log | 4.0 | 268 | 0.4707 | 0.8263 |
No log | 5.0 | 335 | 0.5597 | 0.825 |
No log | 6.0 | 402 | 0.6377 | 0.8387 |
No log | 7.0 | 469 | 0.7444 | 0.8363 |
0.2608 | 8.0 | 536 | 0.7492 | 0.8413 |
0.2608 | 9.0 | 603 | 0.7549 | 0.8387 |
0.2608 | 10.0 | 670 | 0.8264 | 0.845 |
0.2608 | 11.0 | 737 | 1.0370 | 0.8187 |
0.2608 | 12.0 | 804 | 0.9359 | 0.8313 |
0.2608 | 13.0 | 871 | 0.9810 | 0.8387 |
0.2608 | 14.0 | 938 | 1.0293 | 0.84 |
0.0251 | 15.0 | 1005 | 1.0647 | 0.8263 |
0.0251 | 16.0 | 1072 | 1.0693 | 0.83 |
0.0251 | 17.0 | 1139 | 1.0656 | 0.8425 |
0.0251 | 18.0 | 1206 | 1.1193 | 0.8313 |
0.0251 | 19.0 | 1273 | 1.1583 | 0.8187 |
0.0251 | 20.0 | 1340 | 1.1257 | 0.8387 |
0.0251 | 21.0 | 1407 | 1.1632 | 0.825 |
0.0251 | 22.0 | 1474 | 1.2419 | 0.8213 |
0.0108 | 23.0 | 1541 | 1.1635 | 0.84 |
0.0108 | 24.0 | 1608 | 1.1951 | 0.8287 |
0.0108 | 25.0 | 1675 | 1.1710 | 0.845 |
0.0108 | 26.0 | 1742 | 1.2204 | 0.83 |
0.0108 | 27.0 | 1809 | 1.2166 | 0.8413 |
0.0108 | 28.0 | 1876 | 1.2335 | 0.8363 |
0.0108 | 29.0 | 1943 | 1.2355 | 0.8363 |
0.007 | 30.0 | 2010 | 1.2423 | 0.8425 |
0.007 | 31.0 | 2077 | 1.2511 | 0.8425 |
0.007 | 32.0 | 2144 | 1.2563 | 0.84 |
0.007 | 33.0 | 2211 | 1.2501 | 0.8413 |
0.007 | 34.0 | 2278 | 1.2431 | 0.8375 |
0.007 | 35.0 | 2345 | 1.2553 | 0.8387 |
0.007 | 36.0 | 2412 | 1.2635 | 0.8425 |
0.007 | 37.0 | 2479 | 1.2970 | 0.835 |
0.0061 | 38.0 | 2546 | 1.2894 | 0.8375 |
0.0061 | 39.0 | 2613 | 1.2773 | 0.84 |
0.0061 | 40.0 | 2680 | 1.2836 | 0.84 |
0.0061 | 41.0 | 2747 | 1.2916 | 0.8375 |
0.0061 | 42.0 | 2814 | 1.2869 | 0.8387 |
0.0061 | 43.0 | 2881 | 1.3032 | 0.8287 |
0.0061 | 44.0 | 2948 | 1.3056 | 0.8413 |
0.0047 | 45.0 | 3015 | 1.2813 | 0.8438 |
0.0047 | 46.0 | 3082 | 1.2811 | 0.8413 |
0.0047 | 47.0 | 3149 | 1.2858 | 0.8413 |
0.0047 | 48.0 | 3216 | 1.2960 | 0.8387 |
0.0047 | 49.0 | 3283 | 1.2971 | 0.8387 |
0.0047 | 50.0 | 3350 | 1.2972 | 0.8387 |
Framework versions
- Transformers 4.39.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for aloychow/product-review-information-density-detection-distilbert
Base model
distilbert/distilbert-base-uncased