RoBERTa-Base-SE2025T11A-sun-v20250108110637

This model is a fine-tuned version of w11wo/sundanese-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5061
  • F1 Macro: 0.6108
  • F1 Micro: 0.6184
  • F1 Weighted: 0.6177
  • F1 Samples: 0.6281
  • F1 Label Marah: 0.6606
  • F1 Label Jijik: 0.5607
  • F1 Label Takut: 0.5833
  • F1 Label Senang: 0.7765
  • F1 Label Sedih: 0.5897
  • F1 Label Terkejut: 0.5641
  • F1 Label Biasa: 0.5405

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted F1 Samples F1 Label Marah F1 Label Jijik F1 Label Takut F1 Label Senang F1 Label Sedih F1 Label Terkejut F1 Label Biasa
0.5025 0.1805 100 0.4545 0.0381 0.0539 0.0497 0.0345 0.1613 0.1053 0.0 0.0 0.0 0.0 0.0
0.4934 0.3610 200 0.4318 0.0204 0.0209 0.0198 0.0120 0.0 0.0 0.0541 0.0889 0.0 0.0 0.0
0.4199 0.5415 300 0.4168 0.1191 0.2156 0.1225 0.1351 0.0 0.04 0.0 0.7473 0.0 0.0465 0.0
0.4328 0.7220 400 0.3883 0.2034 0.2971 0.2179 0.1730 0.0357 0.2769 0.0 0.7273 0.0 0.3836 0.0
0.4336 0.9025 500 0.3829 0.2447 0.3324 0.2520 0.2477 0.1667 0.1481 0.5312 0.7253 0.0952 0.0465 0.0
0.3805 1.0830 600 0.3518 0.3722 0.4373 0.4013 0.3431 0.425 0.3733 0.4681 0.7209 0.4444 0.1739 0.0
0.3449 1.2635 700 0.3677 0.4440 0.5119 0.4852 0.4492 0.5636 0.5138 0.5574 0.6933 0.2979 0.4819 0.0
0.3215 1.4440 800 0.3446 0.3923 0.4552 0.4232 0.3844 0.3429 0.4706 0.3256 0.7407 0.5333 0.3333 0.0
0.3339 1.6245 900 0.3218 0.5718 0.5844 0.5672 0.5326 0.6186 0.4304 0.6761 0.8 0.6098 0.2963 0.5714
0.3285 1.8051 1000 0.3236 0.5582 0.5636 0.5451 0.4788 0.5060 0.2951 0.6780 0.7381 0.5538 0.5652 0.5714
0.3138 1.9856 1100 0.3195 0.4983 0.5837 0.5460 0.5584 0.6486 0.58 0.56 0.8 0.4231 0.4762 0.0
0.2243 2.1661 1200 0.3214 0.6046 0.6070 0.6087 0.5853 0.5745 0.5660 0.6774 0.7778 0.5806 0.5556 0.5
0.2396 2.3466 1300 0.3096 0.5517 0.5821 0.5657 0.5488 0.6170 0.4058 0.6667 0.7792 0.5455 0.5143 0.3333
0.214 2.5271 1400 0.3470 0.5485 0.5748 0.5626 0.5581 0.5116 0.5714 0.5926 0.7619 0.6377 0.4308 0.3333
0.207 2.7076 1500 0.3219 0.5611 0.5963 0.5812 0.5689 0.68 0.4935 0.6557 0.7527 0.5 0.5122 0.3333
0.2076 2.8881 1600 0.3184 0.5815 0.6260 0.6102 0.6147 0.6964 0.5783 0.6866 0.7674 0.5424 0.5385 0.2609
0.1933 3.0686 1700 0.3289 0.6334 0.6338 0.6339 0.6171 0.6286 0.5909 0.6552 0.7368 0.5915 0.625 0.6061
0.1382 3.2491 1800 0.3424 0.6222 0.6194 0.6111 0.6180 0.6239 0.48 0.64 0.7692 0.6111 0.525 0.7059
0.1453 3.4296 1900 0.3447 0.6305 0.6267 0.6268 0.6159 0.6452 0.5490 0.6545 0.75 0.6154 0.5507 0.6486
0.1299 3.6101 2000 0.3615 0.6390 0.6302 0.6303 0.6185 0.5833 0.5347 0.6857 0.8049 0.6 0.5979 0.6667
0.1153 3.7906 2100 0.3538 0.6205 0.6257 0.6181 0.6254 0.6667 0.5301 0.72 0.7442 0.5312 0.5263 0.625
0.1411 3.9711 2200 0.3747 0.6002 0.6018 0.5994 0.6195 0.6195 0.5524 0.6364 0.7381 0.5679 0.4928 0.5946
0.1288 4.1516 2300 0.3738 0.6011 0.6063 0.6022 0.6020 0.6607 0.5057 0.5634 0.7529 0.6111 0.5195 0.5946
0.0787 4.3321 2400 0.3761 0.6160 0.6239 0.6184 0.6138 0.6667 0.5060 0.6479 0.7765 0.6585 0.4938 0.5625
0.077 4.5126 2500 0.3990 0.6063 0.6089 0.6104 0.5962 0.6226 0.5435 0.6579 0.7397 0.6087 0.5455 0.5263
0.1005 4.6931 2600 0.4208 0.6186 0.6221 0.6229 0.6200 0.6796 0.5593 0.6780 0.75 0.5797 0.5195 0.5641
0.0732 4.8736 2700 0.4226 0.6001 0.6089 0.6085 0.6086 0.66 0.5310 0.6071 0.7816 0.5946 0.5263 0.5
0.0853 5.0542 2800 0.4128 0.6158 0.6216 0.6193 0.6189 0.6610 0.5657 0.6087 0.7561 0.5882 0.55 0.5806
0.0623 5.2347 2900 0.4176 0.6103 0.6180 0.6153 0.6104 0.6538 0.5495 0.5758 0.7529 0.6316 0.5526 0.5556
0.0569 5.4152 3000 0.4258 0.6224 0.6287 0.6231 0.6276 0.6847 0.5195 0.6585 0.7561 0.575 0.5570 0.6061
0.0622 5.5957 3100 0.4234 0.6106 0.6194 0.6168 0.6171 0.6727 0.5714 0.5926 0.7619 0.6133 0.5063 0.5556
0.0549 5.7762 3200 0.4328 0.6094 0.6148 0.6137 0.6096 0.6667 0.5625 0.5672 0.7561 0.6216 0.5128 0.5789
0.0539 5.9567 3300 0.4466 0.6269 0.6223 0.6247 0.6152 0.6538 0.5636 0.6269 0.7595 0.6024 0.5366 0.6452
0.0385 6.1372 3400 0.4408 0.6165 0.6207 0.6198 0.6233 0.6607 0.5660 0.6562 0.7470 0.5946 0.5195 0.5714
0.0362 6.3177 3500 0.4625 0.6293 0.6335 0.6338 0.6333 0.6852 0.5983 0.6441 0.7619 0.6154 0.5122 0.5882
0.042 6.4982 3600 0.4434 0.5992 0.6036 0.6028 0.5979 0.6275 0.5393 0.64 0.7561 0.5412 0.55 0.5405
0.0483 6.6787 3700 0.4462 0.6225 0.6339 0.6308 0.6299 0.7091 0.5652 0.5882 0.7907 0.6053 0.5432 0.5556
0.0359 6.8592 3800 0.4507 0.5981 0.6119 0.6127 0.6039 0.6796 0.5556 0.5882 0.7619 0.6377 0.5195 0.4444
0.0385 7.0397 3900 0.4697 0.6224 0.625 0.6252 0.6246 0.6415 0.5818 0.5970 0.7561 0.6173 0.575 0.5882
0.0289 7.2202 4000 0.4706 0.6201 0.6228 0.6222 0.6276 0.6607 0.5686 0.5797 0.7470 0.6173 0.5610 0.6061
0.0299 7.4007 4100 0.4745 0.6103 0.6115 0.6111 0.6044 0.6182 0.5941 0.5833 0.7317 0.575 0.5641 0.6061
0.0291 7.5812 4200 0.4836 0.6008 0.6098 0.6087 0.6119 0.6337 0.5794 0.5882 0.7765 0.5833 0.5316 0.5128
0.0275 7.7617 4300 0.4867 0.6274 0.6323 0.6322 0.6327 0.6604 0.6168 0.6061 0.7470 0.5882 0.5854 0.5882
0.0214 7.9422 4400 0.4874 0.6066 0.6128 0.6118 0.6123 0.6346 0.5490 0.5714 0.7765 0.6286 0.5455 0.5405
0.02 8.1227 4500 0.4903 0.6247 0.6308 0.6290 0.6351 0.6429 0.5981 0.6087 0.7765 0.6301 0.5455 0.5714
0.0194 8.3032 4600 0.4970 0.6090 0.6098 0.6094 0.6182 0.6207 0.5437 0.6027 0.7619 0.5814 0.5641 0.5882
0.0213 8.4838 4700 0.4997 0.6072 0.6168 0.6161 0.6206 0.6538 0.5794 0.5882 0.7765 0.6076 0.5316 0.5128
0.0171 8.6643 4800 0.4990 0.6102 0.6159 0.6136 0.6218 0.6355 0.5872 0.6087 0.7765 0.5854 0.5070 0.5714
0.0208 8.8448 4900 0.5087 0.6052 0.6084 0.6070 0.6227 0.6154 0.5766 0.5915 0.7711 0.5823 0.5205 0.5789
0.0194 9.0253 5000 0.5037 0.6100 0.6179 0.6174 0.6228 0.6667 0.5766 0.5882 0.7619 0.6111 0.525 0.5405
0.0132 9.2058 5100 0.4986 0.5967 0.6053 0.6043 0.6138 0.6545 0.5660 0.5797 0.7619 0.5823 0.5063 0.5263
0.0177 9.3863 5200 0.5023 0.5995 0.6085 0.6065 0.6207 0.6486 0.5607 0.5882 0.7765 0.5897 0.5067 0.5263
0.0138 9.5668 5300 0.5026 0.6087 0.6168 0.6156 0.6258 0.6606 0.5607 0.5797 0.7765 0.5974 0.5455 0.5405
0.0161 9.7473 5400 0.5066 0.6123 0.6195 0.6185 0.6273 0.6606 0.5741 0.5797 0.7765 0.5897 0.55 0.5556
0.0155 9.9278 5500 0.5061 0.6108 0.6184 0.6177 0.6281 0.6606 0.5607 0.5833 0.7765 0.5897 0.5641 0.5405

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alxxtexxr/RoBERTa-Base-SE2025T11A-sun-v20250108110637

Finetuned
(12)
this model