RoBERTa-Base-SE2025T11A-sun-v20250108115409
This model is a fine-tuned version of w11wo/sundanese-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6184
- F1 Macro: 0.6208
- F1 Micro: 0.6202
- F1 Weighted: 0.6194
- F1 Samples: 0.6273
- F1 Label Marah: 0.6095
- F1 Label Jijik: 0.5636
- F1 Label Takut: 0.5789
- F1 Label Senang: 0.7907
- F1 Label Sedih: 0.6420
- F1 Label Terkejut: 0.5455
- F1 Label Biasa: 0.6154
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | F1 Samples | F1 Label Marah | F1 Label Jijik | F1 Label Takut | F1 Label Senang | F1 Label Sedih | F1 Label Terkejut | F1 Label Biasa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5025 | 0.1805 | 100 | 0.4545 | 0.0381 | 0.0539 | 0.0497 | 0.0345 | 0.1613 | 0.1053 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.4938 | 0.3610 | 200 | 0.4332 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.4204 | 0.5415 | 300 | 0.4173 | 0.1104 | 0.2042 | 0.1134 | 0.1276 | 0.0 | 0.0392 | 0.0 | 0.7333 | 0.0 | 0.0 | 0.0 |
0.4333 | 0.7220 | 400 | 0.3903 | 0.1978 | 0.2811 | 0.2130 | 0.1677 | 0.0357 | 0.3030 | 0.0 | 0.6747 | 0.0 | 0.3714 | 0.0 |
0.4342 | 0.9025 | 500 | 0.3825 | 0.2448 | 0.3387 | 0.2510 | 0.2523 | 0.1356 | 0.1818 | 0.5484 | 0.7527 | 0.0952 | 0.0 | 0.0 |
0.3831 | 1.0830 | 600 | 0.3514 | 0.3626 | 0.4293 | 0.3931 | 0.3386 | 0.4444 | 0.3544 | 0.4 | 0.7209 | 0.4444 | 0.1739 | 0.0 |
0.3454 | 1.2635 | 700 | 0.3686 | 0.4495 | 0.5185 | 0.4910 | 0.4575 | 0.5690 | 0.5225 | 0.5763 | 0.7105 | 0.2979 | 0.4706 | 0.0 |
0.3233 | 1.4440 | 800 | 0.3443 | 0.4102 | 0.4751 | 0.4400 | 0.4039 | 0.3143 | 0.4854 | 0.3256 | 0.7561 | 0.6349 | 0.3548 | 0.0 |
0.3341 | 1.6245 | 900 | 0.3174 | 0.5738 | 0.5861 | 0.5726 | 0.5318 | 0.6 | 0.425 | 0.6667 | 0.7792 | 0.6410 | 0.3860 | 0.5185 |
0.3311 | 1.8051 | 1000 | 0.3233 | 0.5625 | 0.5672 | 0.5512 | 0.4868 | 0.5476 | 0.2951 | 0.6780 | 0.7381 | 0.5797 | 0.5275 | 0.5714 |
0.3157 | 1.9856 | 1100 | 0.3160 | 0.4992 | 0.5796 | 0.5461 | 0.5578 | 0.6549 | 0.5625 | 0.5882 | 0.7742 | 0.4528 | 0.4615 | 0.0 |
0.2242 | 2.1661 | 1200 | 0.3282 | 0.5922 | 0.5938 | 0.5947 | 0.5722 | 0.5435 | 0.5607 | 0.6667 | 0.7778 | 0.5574 | 0.5393 | 0.5 |
0.2403 | 2.3466 | 1300 | 0.3081 | 0.5586 | 0.5909 | 0.5725 | 0.5541 | 0.6263 | 0.3881 | 0.6753 | 0.7848 | 0.5672 | 0.5352 | 0.3333 |
0.2142 | 2.5271 | 1400 | 0.3479 | 0.5597 | 0.5827 | 0.5710 | 0.5610 | 0.5287 | 0.5806 | 0.5385 | 0.7711 | 0.6301 | 0.4688 | 0.4 |
0.2091 | 2.7076 | 1500 | 0.3254 | 0.5764 | 0.5992 | 0.5869 | 0.5719 | 0.6804 | 0.4615 | 0.6774 | 0.7527 | 0.5 | 0.5185 | 0.4444 |
0.212 | 2.8881 | 1600 | 0.3223 | 0.5793 | 0.6154 | 0.6027 | 0.5988 | 0.6786 | 0.5814 | 0.6875 | 0.7529 | 0.5085 | 0.5263 | 0.32 |
0.1939 | 3.0686 | 1700 | 0.3372 | 0.6343 | 0.6274 | 0.6286 | 0.6168 | 0.6154 | 0.5349 | 0.6667 | 0.7733 | 0.6286 | 0.5714 | 0.65 |
0.1382 | 3.2491 | 1800 | 0.3555 | 0.6085 | 0.6090 | 0.5999 | 0.5952 | 0.6095 | 0.4658 | 0.5974 | 0.7912 | 0.5974 | 0.5316 | 0.6667 |
0.1494 | 3.4296 | 1900 | 0.3503 | 0.6094 | 0.6099 | 0.6089 | 0.6029 | 0.6383 | 0.5455 | 0.6296 | 0.75 | 0.5625 | 0.5352 | 0.6047 |
0.129 | 3.6101 | 2000 | 0.3766 | 0.6004 | 0.6106 | 0.6058 | 0.5970 | 0.5918 | 0.5057 | 0.6364 | 0.7901 | 0.6027 | 0.5934 | 0.4828 |
0.1182 | 3.7906 | 2100 | 0.3589 | 0.6283 | 0.6298 | 0.6276 | 0.6287 | 0.6731 | 0.5176 | 0.6765 | 0.7654 | 0.6176 | 0.5366 | 0.6111 |
0.143 | 3.9711 | 2200 | 0.3735 | 0.5977 | 0.6022 | 0.5984 | 0.6138 | 0.6306 | 0.5385 | 0.5556 | 0.7765 | 0.5814 | 0.5070 | 0.5946 |
0.1281 | 4.1516 | 2300 | 0.3730 | 0.6270 | 0.6306 | 0.6294 | 0.6273 | 0.6783 | 0.5417 | 0.5833 | 0.7711 | 0.6176 | 0.5909 | 0.6061 |
0.0804 | 4.3321 | 2400 | 0.4072 | 0.6253 | 0.6292 | 0.6277 | 0.6341 | 0.6604 | 0.5818 | 0.5867 | 0.8 | 0.6067 | 0.5352 | 0.6061 |
0.0829 | 4.5126 | 2500 | 0.4064 | 0.6110 | 0.6120 | 0.6140 | 0.6125 | 0.6306 | 0.5376 | 0.625 | 0.7222 | 0.6571 | 0.5542 | 0.55 |
0.1022 | 4.6931 | 2600 | 0.4271 | 0.6175 | 0.6218 | 0.6199 | 0.6228 | 0.6465 | 0.5825 | 0.6154 | 0.7556 | 0.5882 | 0.5432 | 0.5909 |
0.0707 | 4.8736 | 2700 | 0.4542 | 0.5901 | 0.5993 | 0.5936 | 0.6050 | 0.6408 | 0.5664 | 0.5455 | 0.7765 | 0.5312 | 0.4928 | 0.5778 |
0.0921 | 5.0542 | 2800 | 0.4340 | 0.5943 | 0.5982 | 0.5975 | 0.5992 | 0.6296 | 0.5714 | 0.5556 | 0.775 | 0.5758 | 0.4810 | 0.5714 |
0.0567 | 5.2347 | 2900 | 0.4351 | 0.5975 | 0.6098 | 0.6052 | 0.6092 | 0.6727 | 0.5227 | 0.5312 | 0.7674 | 0.6353 | 0.5238 | 0.5294 |
0.0567 | 5.4152 | 3000 | 0.4385 | 0.5999 | 0.6079 | 0.6068 | 0.6122 | 0.6604 | 0.5474 | 0.5714 | 0.7674 | 0.6133 | 0.5063 | 0.5333 |
0.0527 | 5.5957 | 3100 | 0.4416 | 0.6082 | 0.6140 | 0.6126 | 0.6150 | 0.6476 | 0.5684 | 0.6071 | 0.7586 | 0.6053 | 0.5122 | 0.5581 |
0.0611 | 5.7762 | 3200 | 0.4462 | 0.6147 | 0.6173 | 0.6153 | 0.6179 | 0.6667 | 0.5686 | 0.5352 | 0.7711 | 0.625 | 0.5 | 0.6364 |
0.0556 | 5.9567 | 3300 | 0.4505 | 0.6256 | 0.6264 | 0.6246 | 0.6195 | 0.6441 | 0.5474 | 0.5915 | 0.7654 | 0.6579 | 0.5479 | 0.625 |
0.046 | 6.1372 | 3400 | 0.4700 | 0.6178 | 0.6165 | 0.6159 | 0.6125 | 0.6542 | 0.5294 | 0.6410 | 0.75 | 0.5915 | 0.5333 | 0.625 |
0.0417 | 6.3177 | 3500 | 0.4695 | 0.6228 | 0.6255 | 0.6261 | 0.6296 | 0.66 | 0.5631 | 0.6333 | 0.7529 | 0.6 | 0.5714 | 0.5789 |
0.041 | 6.4982 | 3600 | 0.4619 | 0.6104 | 0.6162 | 0.6161 | 0.6047 | 0.6667 | 0.5111 | 0.64 | 0.75 | 0.6269 | 0.5517 | 0.5263 |
0.057 | 6.6787 | 3700 | 0.4954 | 0.5990 | 0.6051 | 0.6054 | 0.6164 | 0.6542 | 0.5306 | 0.6 | 0.7674 | 0.5647 | 0.5495 | 0.5263 |
0.0398 | 6.8592 | 3800 | 0.4771 | 0.6175 | 0.6211 | 0.6197 | 0.6167 | 0.6263 | 0.5333 | 0.6234 | 0.7711 | 0.6575 | 0.5526 | 0.5581 |
0.03 | 7.0397 | 3900 | 0.4944 | 0.6045 | 0.6101 | 0.6099 | 0.6123 | 0.6 | 0.5376 | 0.6410 | 0.7805 | 0.5870 | 0.5854 | 0.5 |
0.032 | 7.2202 | 4000 | 0.4920 | 0.6333 | 0.6381 | 0.6356 | 0.6497 | 0.6446 | 0.5849 | 0.5714 | 0.8 | 0.6410 | 0.5854 | 0.6061 |
0.0359 | 7.4007 | 4100 | 0.5033 | 0.6265 | 0.6241 | 0.6246 | 0.6302 | 0.6271 | 0.5577 | 0.6269 | 0.7805 | 0.5897 | 0.5783 | 0.625 |
0.0257 | 7.5812 | 4200 | 0.5155 | 0.6090 | 0.6206 | 0.6199 | 0.6225 | 0.6535 | 0.5872 | 0.6176 | 0.7955 | 0.5634 | 0.5581 | 0.4878 |
0.033 | 7.7617 | 4300 | 0.5402 | 0.6063 | 0.6109 | 0.6123 | 0.6146 | 0.6286 | 0.5593 | 0.6 | 0.7907 | 0.5897 | 0.5495 | 0.5263 |
0.0273 | 7.9422 | 4400 | 0.5259 | 0.6179 | 0.6190 | 0.6187 | 0.6272 | 0.6538 | 0.5143 | 0.5797 | 0.7907 | 0.6076 | 0.5789 | 0.6 |
0.0223 | 8.1227 | 4500 | 0.5211 | 0.6203 | 0.6248 | 0.6217 | 0.6291 | 0.6481 | 0.5055 | 0.6420 | 0.7907 | 0.6197 | 0.5647 | 0.5714 |
0.0193 | 8.3032 | 4600 | 0.5428 | 0.6230 | 0.6241 | 0.6246 | 0.6380 | 0.6230 | 0.5455 | 0.6230 | 0.8 | 0.6269 | 0.5714 | 0.5714 |
0.0238 | 8.4838 | 4700 | 0.5473 | 0.6188 | 0.6172 | 0.6170 | 0.6384 | 0.6107 | 0.5192 | 0.6389 | 0.7816 | 0.6154 | 0.5714 | 0.5946 |
0.021 | 8.6643 | 4800 | 0.5323 | 0.6220 | 0.6263 | 0.6265 | 0.6354 | 0.6034 | 0.6055 | 0.6 | 0.8 | 0.6588 | 0.5405 | 0.5455 |
0.0205 | 8.8448 | 4900 | 0.5348 | 0.6103 | 0.6132 | 0.6150 | 0.6224 | 0.6481 | 0.5517 | 0.6032 | 0.7561 | 0.6265 | 0.5366 | 0.55 |
0.017 | 9.0253 | 5000 | 0.5623 | 0.6290 | 0.625 | 0.6273 | 0.6471 | 0.6610 | 0.5664 | 0.5366 | 0.7765 | 0.6173 | 0.5783 | 0.6667 |
0.013 | 9.2058 | 5100 | 0.5400 | 0.6090 | 0.6157 | 0.6160 | 0.6203 | 0.6458 | 0.5794 | 0.5634 | 0.7765 | 0.5926 | 0.5647 | 0.5405 |
0.0174 | 9.3863 | 5200 | 0.5628 | 0.6281 | 0.6278 | 0.6273 | 0.6419 | 0.6379 | 0.5714 | 0.6 | 0.7816 | 0.6133 | 0.5641 | 0.6286 |
0.0139 | 9.5668 | 5300 | 0.5469 | 0.6134 | 0.6162 | 0.6139 | 0.6137 | 0.6139 | 0.5333 | 0.6316 | 0.7857 | 0.5977 | 0.56 | 0.5714 |
0.0139 | 9.7473 | 5400 | 0.5626 | 0.6235 | 0.6234 | 0.6234 | 0.6303 | 0.6316 | 0.5437 | 0.5867 | 0.7907 | 0.6575 | 0.55 | 0.6047 |
0.0174 | 9.9278 | 5500 | 0.5755 | 0.6210 | 0.6186 | 0.6194 | 0.6354 | 0.6087 | 0.5391 | 0.5753 | 0.7907 | 0.6582 | 0.5641 | 0.6111 |
0.0151 | 10.1083 | 5600 | 0.5767 | 0.6237 | 0.6231 | 0.6229 | 0.6362 | 0.6341 | 0.5686 | 0.575 | 0.7619 | 0.6410 | 0.5570 | 0.6286 |
0.0091 | 10.2888 | 5700 | 0.5831 | 0.6046 | 0.6073 | 0.6072 | 0.6171 | 0.6019 | 0.5545 | 0.5714 | 0.7711 | 0.6279 | 0.55 | 0.5556 |
0.0092 | 10.4693 | 5800 | 0.5728 | 0.6110 | 0.6124 | 0.6115 | 0.6203 | 0.6122 | 0.5437 | 0.5789 | 0.7765 | 0.6279 | 0.5526 | 0.5854 |
0.0093 | 10.6498 | 5900 | 0.5824 | 0.6150 | 0.6167 | 0.6156 | 0.6291 | 0.6379 | 0.5577 | 0.5570 | 0.7907 | 0.6053 | 0.5455 | 0.6111 |
0.0133 | 10.8303 | 6000 | 0.5804 | 0.6110 | 0.6151 | 0.6139 | 0.6255 | 0.6435 | 0.5455 | 0.5946 | 0.7765 | 0.6022 | 0.5432 | 0.5714 |
0.01 | 11.0108 | 6100 | 0.5945 | 0.6012 | 0.6095 | 0.6095 | 0.6107 | 0.6154 | 0.5660 | 0.5970 | 0.7907 | 0.6341 | 0.5176 | 0.4878 |
0.0061 | 11.1913 | 6200 | 0.5868 | 0.6241 | 0.6277 | 0.6264 | 0.6426 | 0.6372 | 0.5741 | 0.6061 | 0.7907 | 0.6301 | 0.5455 | 0.5854 |
0.0066 | 11.3718 | 6300 | 0.5882 | 0.6120 | 0.6197 | 0.6194 | 0.6302 | 0.6481 | 0.5688 | 0.5797 | 0.7907 | 0.64 | 0.5301 | 0.5263 |
0.0082 | 11.5523 | 6400 | 0.5876 | 0.6208 | 0.6218 | 0.6205 | 0.6378 | 0.6071 | 0.5926 | 0.56 | 0.7907 | 0.6341 | 0.5455 | 0.6154 |
0.0083 | 11.7329 | 6500 | 0.6084 | 0.6128 | 0.6143 | 0.6135 | 0.6270 | 0.6055 | 0.5841 | 0.5714 | 0.7907 | 0.6118 | 0.5316 | 0.5946 |
0.0049 | 11.9134 | 6600 | 0.6021 | 0.6105 | 0.6138 | 0.6137 | 0.6239 | 0.6168 | 0.5536 | 0.6061 | 0.7907 | 0.6316 | 0.525 | 0.55 |
0.0055 | 12.0939 | 6700 | 0.5952 | 0.6152 | 0.6218 | 0.6207 | 0.6338 | 0.6182 | 0.5905 | 0.5823 | 0.7907 | 0.6341 | 0.55 | 0.5405 |
0.0043 | 12.2744 | 6800 | 0.6066 | 0.6157 | 0.6201 | 0.6193 | 0.6333 | 0.6087 | 0.6018 | 0.5556 | 0.7907 | 0.6173 | 0.5647 | 0.5714 |
0.0045 | 12.4549 | 6900 | 0.6073 | 0.6083 | 0.6159 | 0.6154 | 0.6269 | 0.6182 | 0.5818 | 0.5405 | 0.7907 | 0.6329 | 0.5679 | 0.5263 |
0.0059 | 12.6354 | 7000 | 0.6100 | 0.6160 | 0.6194 | 0.6200 | 0.6297 | 0.6364 | 0.5421 | 0.575 | 0.7907 | 0.6579 | 0.5542 | 0.5556 |
0.0045 | 12.8159 | 7100 | 0.6128 | 0.6199 | 0.6254 | 0.6248 | 0.6462 | 0.6496 | 0.5841 | 0.5556 | 0.7907 | 0.6579 | 0.5301 | 0.5714 |
0.0045 | 12.9964 | 7200 | 0.6132 | 0.6176 | 0.6182 | 0.6183 | 0.6407 | 0.6271 | 0.5766 | 0.5455 | 0.7907 | 0.6420 | 0.5301 | 0.6111 |
0.0055 | 13.1769 | 7300 | 0.6144 | 0.6232 | 0.6265 | 0.6262 | 0.6422 | 0.6422 | 0.5893 | 0.6 | 0.7907 | 0.625 | 0.5301 | 0.5854 |
0.0037 | 13.3574 | 7400 | 0.6152 | 0.6218 | 0.6224 | 0.6213 | 0.6326 | 0.6226 | 0.5818 | 0.6 | 0.7907 | 0.6173 | 0.525 | 0.6154 |
0.0052 | 13.5379 | 7500 | 0.6199 | 0.6218 | 0.6215 | 0.6212 | 0.6324 | 0.6168 | 0.5766 | 0.5833 | 0.7765 | 0.6341 | 0.55 | 0.6154 |
0.0036 | 13.7184 | 7600 | 0.6182 | 0.6085 | 0.6066 | 0.6069 | 0.6143 | 0.6111 | 0.5347 | 0.5366 | 0.7765 | 0.6420 | 0.5432 | 0.6154 |
0.0045 | 13.8989 | 7700 | 0.6240 | 0.6099 | 0.6087 | 0.6093 | 0.6185 | 0.6154 | 0.5688 | 0.5570 | 0.7619 | 0.6076 | 0.5432 | 0.6154 |
0.0043 | 14.0794 | 7800 | 0.6167 | 0.6223 | 0.6231 | 0.6229 | 0.6353 | 0.6429 | 0.5660 | 0.5714 | 0.7765 | 0.6341 | 0.55 | 0.6154 |
0.0037 | 14.2599 | 7900 | 0.6143 | 0.6190 | 0.6202 | 0.6197 | 0.6272 | 0.6226 | 0.5714 | 0.5789 | 0.7907 | 0.6329 | 0.5366 | 0.6 |
0.0045 | 14.4404 | 8000 | 0.6141 | 0.6270 | 0.6270 | 0.6269 | 0.6363 | 0.6355 | 0.5607 | 0.5789 | 0.7907 | 0.6579 | 0.55 | 0.6154 |
0.0038 | 14.6209 | 8100 | 0.6180 | 0.6244 | 0.6248 | 0.6247 | 0.6372 | 0.6355 | 0.5688 | 0.5641 | 0.7907 | 0.6579 | 0.5385 | 0.6154 |
0.0034 | 14.8014 | 8200 | 0.6189 | 0.6207 | 0.6200 | 0.6193 | 0.6290 | 0.6095 | 0.5636 | 0.5789 | 0.7907 | 0.6410 | 0.5455 | 0.6154 |
0.0033 | 14.9819 | 8300 | 0.6184 | 0.6208 | 0.6202 | 0.6194 | 0.6273 | 0.6095 | 0.5636 | 0.5789 | 0.7907 | 0.6420 | 0.5455 | 0.6154 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for alxxtexxr/RoBERTa-Base-SE2025T11A-sun-v20250108115409
Base model
w11wo/sundanese-roberta-base