alxxtexxr's picture
End of training
a88e732 verified
metadata
library_name: transformers
license: mit
base_model: w11wo/sundanese-roberta-base-emotion-classifier
tags:
  - generated_from_trainer
model-index:
  - name: RoBERTa-Base-SE2025T11A-sun-v20250108145152
    results: []

RoBERTa-Base-SE2025T11A-sun-v20250108145152

This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5614
  • F1 Macro: 0.5560
  • F1 Micro: 0.6057
  • F1 Weighted: 0.5777
  • F1 Samples: 0.5504
  • F1 Label Senang: 0.7938
  • F1 Label Marah: 0.25
  • F1 Label Sedih: 0.7480
  • F1 Label Takut: 0.5333
  • F1 Label Jijik: 0.5556
  • F1 Label Terkejut: 0.4954
  • F1 Label Biasa: 0.5161

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted F1 Samples F1 Label Senang F1 Label Marah F1 Label Sedih F1 Label Takut F1 Label Jijik F1 Label Terkejut F1 Label Biasa
2.099 0.1133 100 1.7787 0.2631 0.3132 0.2920 0.2960 0.6411 0.1774 0.3116 0.2379 0.0351 0.1443 0.2941
1.6307 0.2265 200 1.2753 0.2191 0.3170 0.2403 0.3069 0.6129 0.1748 0.0764 0.0 0.3089 0.0270 0.3333
1.2831 0.3398 300 1.1934 0.2690 0.3663 0.3148 0.3660 0.7379 0.2769 0.0294 0.0 0.4379 0.3036 0.0976
1.2412 0.4530 400 0.7431 0.4136 0.4652 0.4385 0.4763 0.7488 0.0 0.5490 0.3511 0.4065 0.375 0.4646
1.0289 0.5663 500 0.8748 0.2409 0.3776 0.3005 0.2469 0.7389 0.0597 0.2927 0.0667 0.1311 0.3974 0.0
0.9521 0.6795 600 0.8581 0.3406 0.4611 0.3920 0.4110 0.7284 0.0 0.5955 0.2121 0.4966 0.3516 0.0
0.9482 0.7928 700 0.7781 0.3332 0.4595 0.3843 0.3396 0.7892 0.0 0.4615 0.2609 0.2462 0.4317 0.1429
0.9216 0.9060 800 1.0512 0.2866 0.4169 0.3467 0.3064 0.7845 0.0317 0.5714 0.1356 0.1017 0.3297 0.0513
0.9789 1.0193 900 1.1081 0.3973 0.5036 0.4456 0.4571 0.8286 0.4060 0.5882 0.3099 0.4904 0.1067 0.0513
0.7743 1.1325 1000 0.6679 0.4643 0.5561 0.5006 0.5013 0.8186 0.0923 0.656 0.4225 0.5391 0.4107 0.3111
0.766 1.2458 1100 0.6852 0.4389 0.5459 0.4886 0.4835 0.8077 0.0625 0.6214 0.5116 0.5299 0.4878 0.0513
0.6553 1.3590 1200 0.6439 0.5471 0.5958 0.5749 0.5629 0.8116 0.3133 0.7179 0.5128 0.5422 0.4956 0.4364
0.6697 1.4723 1300 0.5946 0.5530 0.5941 0.5715 0.5504 0.7960 0.3077 0.7258 0.5161 0.4952 0.4505 0.5797
0.5471 1.5855 1400 0.6426 0.5438 0.5934 0.5672 0.5434 0.8040 0.3077 0.6780 0.5128 0.5625 0.46 0.4815
0.5969 1.6988 1500 0.6002 0.5532 0.5964 0.5724 0.5589 0.7882 0.2895 0.7097 0.5316 0.528 0.4771 0.5484
0.6248 1.8120 1600 0.5711 0.5580 0.6095 0.5828 0.5594 0.8060 0.2973 0.7317 0.5455 0.5487 0.5043 0.4727
0.6709 1.9253 1700 0.5614 0.5560 0.6057 0.5777 0.5504 0.7938 0.25 0.7480 0.5333 0.5556 0.4954 0.5161

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0