metadata
library_name: transformers
license: mit
base_model: w11wo/sundanese-roberta-base-emotion-classifier
tags:
- generated_from_trainer
model-index:
- name: RoBERTa-Base-SE2025T11A-sun-v20250108145152
results: []
RoBERTa-Base-SE2025T11A-sun-v20250108145152
This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5614
- F1 Macro: 0.5560
- F1 Micro: 0.6057
- F1 Weighted: 0.5777
- F1 Samples: 0.5504
- F1 Label Senang: 0.7938
- F1 Label Marah: 0.25
- F1 Label Sedih: 0.7480
- F1 Label Takut: 0.5333
- F1 Label Jijik: 0.5556
- F1 Label Terkejut: 0.4954
- F1 Label Biasa: 0.5161
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | F1 Samples | F1 Label Senang | F1 Label Marah | F1 Label Sedih | F1 Label Takut | F1 Label Jijik | F1 Label Terkejut | F1 Label Biasa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.099 | 0.1133 | 100 | 1.7787 | 0.2631 | 0.3132 | 0.2920 | 0.2960 | 0.6411 | 0.1774 | 0.3116 | 0.2379 | 0.0351 | 0.1443 | 0.2941 |
1.6307 | 0.2265 | 200 | 1.2753 | 0.2191 | 0.3170 | 0.2403 | 0.3069 | 0.6129 | 0.1748 | 0.0764 | 0.0 | 0.3089 | 0.0270 | 0.3333 |
1.2831 | 0.3398 | 300 | 1.1934 | 0.2690 | 0.3663 | 0.3148 | 0.3660 | 0.7379 | 0.2769 | 0.0294 | 0.0 | 0.4379 | 0.3036 | 0.0976 |
1.2412 | 0.4530 | 400 | 0.7431 | 0.4136 | 0.4652 | 0.4385 | 0.4763 | 0.7488 | 0.0 | 0.5490 | 0.3511 | 0.4065 | 0.375 | 0.4646 |
1.0289 | 0.5663 | 500 | 0.8748 | 0.2409 | 0.3776 | 0.3005 | 0.2469 | 0.7389 | 0.0597 | 0.2927 | 0.0667 | 0.1311 | 0.3974 | 0.0 |
0.9521 | 0.6795 | 600 | 0.8581 | 0.3406 | 0.4611 | 0.3920 | 0.4110 | 0.7284 | 0.0 | 0.5955 | 0.2121 | 0.4966 | 0.3516 | 0.0 |
0.9482 | 0.7928 | 700 | 0.7781 | 0.3332 | 0.4595 | 0.3843 | 0.3396 | 0.7892 | 0.0 | 0.4615 | 0.2609 | 0.2462 | 0.4317 | 0.1429 |
0.9216 | 0.9060 | 800 | 1.0512 | 0.2866 | 0.4169 | 0.3467 | 0.3064 | 0.7845 | 0.0317 | 0.5714 | 0.1356 | 0.1017 | 0.3297 | 0.0513 |
0.9789 | 1.0193 | 900 | 1.1081 | 0.3973 | 0.5036 | 0.4456 | 0.4571 | 0.8286 | 0.4060 | 0.5882 | 0.3099 | 0.4904 | 0.1067 | 0.0513 |
0.7743 | 1.1325 | 1000 | 0.6679 | 0.4643 | 0.5561 | 0.5006 | 0.5013 | 0.8186 | 0.0923 | 0.656 | 0.4225 | 0.5391 | 0.4107 | 0.3111 |
0.766 | 1.2458 | 1100 | 0.6852 | 0.4389 | 0.5459 | 0.4886 | 0.4835 | 0.8077 | 0.0625 | 0.6214 | 0.5116 | 0.5299 | 0.4878 | 0.0513 |
0.6553 | 1.3590 | 1200 | 0.6439 | 0.5471 | 0.5958 | 0.5749 | 0.5629 | 0.8116 | 0.3133 | 0.7179 | 0.5128 | 0.5422 | 0.4956 | 0.4364 |
0.6697 | 1.4723 | 1300 | 0.5946 | 0.5530 | 0.5941 | 0.5715 | 0.5504 | 0.7960 | 0.3077 | 0.7258 | 0.5161 | 0.4952 | 0.4505 | 0.5797 |
0.5471 | 1.5855 | 1400 | 0.6426 | 0.5438 | 0.5934 | 0.5672 | 0.5434 | 0.8040 | 0.3077 | 0.6780 | 0.5128 | 0.5625 | 0.46 | 0.4815 |
0.5969 | 1.6988 | 1500 | 0.6002 | 0.5532 | 0.5964 | 0.5724 | 0.5589 | 0.7882 | 0.2895 | 0.7097 | 0.5316 | 0.528 | 0.4771 | 0.5484 |
0.6248 | 1.8120 | 1600 | 0.5711 | 0.5580 | 0.6095 | 0.5828 | 0.5594 | 0.8060 | 0.2973 | 0.7317 | 0.5455 | 0.5487 | 0.5043 | 0.4727 |
0.6709 | 1.9253 | 1700 | 0.5614 | 0.5560 | 0.6057 | 0.5777 | 0.5504 | 0.7938 | 0.25 | 0.7480 | 0.5333 | 0.5556 | 0.4954 | 0.5161 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0