RoBERTa-Base-SE2025T11A-sun-v20250110150952
This model is a fine-tuned version of w11wo/sundanese-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3350
- F1 Macro: 0.6533
- F1 Micro: 0.6746
- F1 Weighted: 0.6698
- F1 Samples: 0.6779
- F1 Label Marah: 0.576
- F1 Label Jijik: 0.6207
- F1 Label Takut: 0.5556
- F1 Label Senang: 0.8526
- F1 Label Sedih: 0.7519
- F1 Label Terkejut: 0.5593
- F1 Label Biasa: 0.6571
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | F1 Samples | F1 Label Marah | F1 Label Jijik | F1 Label Takut | F1 Label Senang | F1 Label Sedih | F1 Label Terkejut | F1 Label Biasa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4979 | 0.1133 | 100 | 0.4225 | 0.1092 | 0.3106 | 0.1653 | 0.2219 | 0.0 | 0.0 | 0.0 | 0.7647 | 0.0 | 0.0 | 0.0 |
0.4436 | 0.2265 | 200 | 0.4056 | 0.1122 | 0.3034 | 0.1698 | 0.2091 | 0.0 | 0.0 | 0.0 | 0.7854 | 0.0 | 0.0 | 0.0 |
0.4156 | 0.3398 | 300 | 0.4032 | 0.1107 | 0.2908 | 0.1676 | 0.1954 | 0.0 | 0.0 | 0.0 | 0.7751 | 0.0 | 0.0 | 0.0 |
0.4204 | 0.4530 | 400 | 0.3861 | 0.1304 | 0.3222 | 0.1914 | 0.2256 | 0.0 | 0.0 | 0.0 | 0.8073 | 0.0 | 0.1053 | 0.0 |
0.3883 | 0.5663 | 500 | 0.3632 | 0.2351 | 0.3741 | 0.2888 | 0.2731 | 0.2564 | 0.0 | 0.3284 | 0.7940 | 0.1370 | 0.1299 | 0.0 |
0.3911 | 0.6795 | 600 | 0.3478 | 0.3287 | 0.4563 | 0.3870 | 0.3525 | 0.2535 | 0.0 | 0.4 | 0.7879 | 0.5417 | 0.3182 | 0.0 |
0.337 | 0.7928 | 700 | 0.3364 | 0.3837 | 0.5037 | 0.4376 | 0.4164 | 0.4048 | 0.1613 | 0.4810 | 0.7964 | 0.5208 | 0.3218 | 0.0 |
0.3549 | 0.9060 | 800 | 0.3213 | 0.4178 | 0.5479 | 0.4751 | 0.4977 | 0.6154 | 0.0351 | 0.5385 | 0.8241 | 0.5155 | 0.3960 | 0.0 |
0.35 | 1.0193 | 900 | 0.3143 | 0.5227 | 0.6003 | 0.5591 | 0.5411 | 0.5 | 0.5806 | 0.4935 | 0.8173 | 0.7143 | 0.3256 | 0.2273 |
0.2836 | 1.1325 | 1000 | 0.3019 | 0.5857 | 0.6248 | 0.6058 | 0.5927 | 0.5789 | 0.4894 | 0.5517 | 0.8246 | 0.6783 | 0.4286 | 0.5484 |
0.2778 | 1.2458 | 1100 | 0.2939 | 0.5464 | 0.6178 | 0.5872 | 0.5769 | 0.6555 | 0.3947 | 0.5316 | 0.8195 | 0.75 | 0.4463 | 0.2273 |
0.2942 | 1.3590 | 1200 | 0.2832 | 0.6138 | 0.6492 | 0.6344 | 0.6265 | 0.6015 | 0.5818 | 0.5195 | 0.8316 | 0.7692 | 0.4444 | 0.5484 |
0.2701 | 1.4723 | 1300 | 0.2858 | 0.6261 | 0.6509 | 0.6411 | 0.6367 | 0.5985 | 0.5361 | 0.5263 | 0.8163 | 0.7213 | 0.5273 | 0.6567 |
0.2492 | 1.5855 | 1400 | 0.2999 | 0.5906 | 0.6349 | 0.6123 | 0.6198 | 0.6102 | 0.5859 | 0.4938 | 0.8325 | 0.6866 | 0.4082 | 0.5172 |
0.258 | 1.6988 | 1500 | 0.2898 | 0.6263 | 0.6566 | 0.6428 | 0.6425 | 0.5773 | 0.5882 | 0.5217 | 0.8358 | 0.7259 | 0.5 | 0.6349 |
0.3253 | 1.8120 | 1600 | 0.2801 | 0.6178 | 0.6512 | 0.6401 | 0.6196 | 0.6055 | 0.5979 | 0.5333 | 0.8272 | 0.7541 | 0.4906 | 0.5161 |
0.2788 | 1.9253 | 1700 | 0.3016 | 0.5906 | 0.6338 | 0.6181 | 0.6195 | 0.6024 | 0.4051 | 0.5610 | 0.8152 | 0.7820 | 0.5045 | 0.4643 |
0.2325 | 2.0385 | 1800 | 0.2823 | 0.6290 | 0.6582 | 0.6450 | 0.6379 | 0.5926 | 0.6286 | 0.5366 | 0.8254 | 0.7313 | 0.48 | 0.6087 |
0.182 | 2.1518 | 1900 | 0.2911 | 0.6430 | 0.6724 | 0.6583 | 0.6682 | 0.6126 | 0.6139 | 0.6 | 0.8374 | 0.7407 | 0.4808 | 0.6154 |
0.1947 | 2.2650 | 2000 | 0.3006 | 0.6238 | 0.6499 | 0.6377 | 0.6361 | 0.5636 | 0.6154 | 0.5 | 0.8068 | 0.725 | 0.5094 | 0.6462 |
0.1809 | 2.3783 | 2100 | 0.2953 | 0.6321 | 0.6583 | 0.6477 | 0.6460 | 0.5243 | 0.5833 | 0.5618 | 0.8421 | 0.7299 | 0.5263 | 0.6567 |
0.1967 | 2.4915 | 2200 | 0.3025 | 0.6259 | 0.6546 | 0.6457 | 0.6499 | 0.6154 | 0.6126 | 0.5679 | 0.8218 | 0.72 | 0.5079 | 0.5357 |
0.195 | 2.6048 | 2300 | 0.3117 | 0.6430 | 0.6675 | 0.6597 | 0.6641 | 0.5634 | 0.5532 | 0.5647 | 0.8259 | 0.7606 | 0.5882 | 0.6452 |
0.1873 | 2.7180 | 2400 | 0.3053 | 0.6452 | 0.6667 | 0.6626 | 0.6729 | 0.5556 | 0.6154 | 0.5301 | 0.8325 | 0.7660 | 0.5806 | 0.6364 |
0.1659 | 2.8313 | 2500 | 0.3036 | 0.6455 | 0.6683 | 0.6647 | 0.6594 | 0.5960 | 0.6154 | 0.5682 | 0.8254 | 0.7559 | 0.5812 | 0.5763 |
0.2041 | 2.9445 | 2600 | 0.3129 | 0.6306 | 0.6555 | 0.6470 | 0.6593 | 0.56 | 0.592 | 0.5581 | 0.8283 | 0.7463 | 0.5091 | 0.6207 |
0.137 | 3.0578 | 2700 | 0.3043 | 0.6316 | 0.6577 | 0.6514 | 0.6472 | 0.5827 | 0.5510 | 0.5301 | 0.8272 | 0.7656 | 0.5645 | 0.6 |
0.1449 | 3.1710 | 2800 | 0.3101 | 0.6272 | 0.6538 | 0.6462 | 0.6502 | 0.5690 | 0.6071 | 0.5349 | 0.8342 | 0.7244 | 0.5323 | 0.5882 |
0.1192 | 3.2843 | 2900 | 0.3101 | 0.6460 | 0.6675 | 0.6643 | 0.6658 | 0.6066 | 0.6095 | 0.5417 | 0.8287 | 0.7606 | 0.5692 | 0.6061 |
0.1165 | 3.3975 | 3000 | 0.3152 | 0.6467 | 0.6707 | 0.6636 | 0.6689 | 0.6015 | 0.5905 | 0.5618 | 0.8426 | 0.7442 | 0.5487 | 0.6377 |
0.1568 | 3.5108 | 3100 | 0.3254 | 0.6428 | 0.6635 | 0.6601 | 0.6670 | 0.5426 | 0.6071 | 0.5684 | 0.8360 | 0.7463 | 0.5739 | 0.625 |
0.1396 | 3.6240 | 3200 | 0.3252 | 0.6367 | 0.6618 | 0.6542 | 0.6598 | 0.5736 | 0.6038 | 0.5556 | 0.8449 | 0.75 | 0.5094 | 0.6197 |
0.1347 | 3.7373 | 3300 | 0.3278 | 0.6326 | 0.6611 | 0.6501 | 0.6649 | 0.5950 | 0.5984 | 0.5128 | 0.8350 | 0.7244 | 0.5357 | 0.6269 |
0.139 | 3.8505 | 3400 | 0.3298 | 0.6457 | 0.6651 | 0.6645 | 0.6660 | 0.5735 | 0.5785 | 0.5618 | 0.8261 | 0.7820 | 0.592 | 0.6061 |
0.1068 | 3.9638 | 3500 | 0.3225 | 0.6515 | 0.6730 | 0.6687 | 0.6673 | 0.6034 | 0.6126 | 0.5542 | 0.8352 | 0.7552 | 0.5714 | 0.6286 |
0.1023 | 4.0770 | 3600 | 0.3215 | 0.6526 | 0.6754 | 0.6703 | 0.6757 | 0.5833 | 0.6182 | 0.5778 | 0.8513 | 0.7368 | 0.5736 | 0.6269 |
0.1192 | 4.1903 | 3700 | 0.3264 | 0.6519 | 0.6730 | 0.6679 | 0.6768 | 0.5954 | 0.6095 | 0.5591 | 0.8377 | 0.7647 | 0.55 | 0.6471 |
0.092 | 4.3035 | 3800 | 0.3323 | 0.6436 | 0.6643 | 0.6615 | 0.6681 | 0.5588 | 0.6126 | 0.5435 | 0.8421 | 0.7612 | 0.56 | 0.6269 |
0.0959 | 4.4168 | 3900 | 0.3346 | 0.6475 | 0.6714 | 0.6662 | 0.6783 | 0.5736 | 0.6055 | 0.5376 | 0.8557 | 0.7591 | 0.5645 | 0.6364 |
0.1125 | 4.5300 | 4000 | 0.3364 | 0.6390 | 0.6589 | 0.6564 | 0.6679 | 0.5522 | 0.5926 | 0.5417 | 0.8404 | 0.7647 | 0.544 | 0.6377 |
0.0954 | 4.6433 | 4100 | 0.3336 | 0.6487 | 0.6714 | 0.6673 | 0.6765 | 0.5827 | 0.6087 | 0.5495 | 0.8646 | 0.7424 | 0.5556 | 0.6377 |
0.0875 | 4.7565 | 4200 | 0.3371 | 0.6454 | 0.6698 | 0.6643 | 0.6730 | 0.5714 | 0.6050 | 0.5333 | 0.8601 | 0.7519 | 0.5593 | 0.6364 |
0.0717 | 4.8698 | 4300 | 0.3348 | 0.6510 | 0.6730 | 0.6678 | 0.6761 | 0.576 | 0.6207 | 0.5393 | 0.8526 | 0.7519 | 0.5593 | 0.6571 |
0.0908 | 4.9830 | 4400 | 0.3350 | 0.6533 | 0.6746 | 0.6698 | 0.6779 | 0.576 | 0.6207 | 0.5556 | 0.8526 | 0.7519 | 0.5593 | 0.6571 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for alxxtexxr/RoBERTa-Base-SE2025T11A-sun-v20250110150952
Base model
w11wo/sundanese-roberta-base