RoBERTa-Base-SE2025T11A-sun-v20250110161855
This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3517
- F1 Macro: 0.6537
- F1 Micro: 0.6737
- F1 Weighted: 0.6709
- F1 Samples: 0.6855
- F1 Label Marah: 0.5354
- F1 Label Jijik: 0.6
- F1 Label Takut: 0.6237
- F1 Label Senang: 0.8495
- F1 Label Sedih: 0.7801
- F1 Label Terkejut: 0.56
- F1 Label Biasa: 0.6269
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | F1 Samples | F1 Label Marah | F1 Label Jijik | F1 Label Takut | F1 Label Senang | F1 Label Sedih | F1 Label Terkejut | F1 Label Biasa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4911 | 0.1133 | 100 | 0.4183 | 0.2071 | 0.3651 | 0.2613 | 0.2732 | 0.0 | 0.0 | 0.2 | 0.7415 | 0.5082 | 0.0 | 0.0 |
0.4261 | 0.2265 | 200 | 0.3822 | 0.2041 | 0.3847 | 0.2651 | 0.2849 | 0.1194 | 0.0 | 0.0364 | 0.7946 | 0.4783 | 0.0 | 0.0 |
0.3781 | 0.3398 | 300 | 0.3630 | 0.2962 | 0.4226 | 0.3536 | 0.3187 | 0.3457 | 0.0 | 0.3125 | 0.7857 | 0.3614 | 0.2683 | 0.0 |
0.3913 | 0.4530 | 400 | 0.3403 | 0.3604 | 0.4553 | 0.4113 | 0.3457 | 0.2785 | 0.0952 | 0.4444 | 0.7066 | 0.6727 | 0.3256 | 0.0 |
0.3673 | 0.5663 | 500 | 0.3157 | 0.4388 | 0.5580 | 0.4939 | 0.5005 | 0.5286 | 0.0 | 0.5476 | 0.8 | 0.7667 | 0.3778 | 0.0513 |
0.3421 | 0.6795 | 600 | 0.3223 | 0.4791 | 0.5618 | 0.5266 | 0.4872 | 0.3958 | 0.4902 | 0.5570 | 0.7650 | 0.7541 | 0.3913 | 0.0 |
0.3167 | 0.7928 | 700 | 0.3030 | 0.5807 | 0.6219 | 0.6011 | 0.5860 | 0.5437 | 0.5055 | 0.6087 | 0.8019 | 0.6891 | 0.4255 | 0.4906 |
0.3379 | 0.9060 | 800 | 0.2896 | 0.5776 | 0.6404 | 0.6137 | 0.6005 | 0.5714 | 0.3784 | 0.575 | 0.86 | 0.7742 | 0.5091 | 0.375 |
0.3529 | 1.0193 | 900 | 0.2967 | 0.5577 | 0.6136 | 0.5900 | 0.5699 | 0.4835 | 0.5106 | 0.5641 | 0.8280 | 0.7639 | 0.4130 | 0.3404 |
0.2628 | 1.1325 | 1000 | 0.2841 | 0.6328 | 0.6658 | 0.6516 | 0.6472 | 0.5913 | 0.5294 | 0.5814 | 0.8447 | 0.7581 | 0.5149 | 0.6102 |
0.2564 | 1.2458 | 1100 | 0.2900 | 0.5953 | 0.6507 | 0.6306 | 0.6344 | 0.6055 | 0.5714 | 0.5783 | 0.8416 | 0.7538 | 0.512 | 0.3043 |
0.2767 | 1.3590 | 1200 | 0.2951 | 0.6124 | 0.6412 | 0.6307 | 0.6187 | 0.5469 | 0.6071 | 0.5570 | 0.7976 | 0.7778 | 0.4646 | 0.5357 |
0.2644 | 1.4723 | 1300 | 0.2841 | 0.6343 | 0.6642 | 0.6543 | 0.6580 | 0.5455 | 0.5957 | 0.575 | 0.8394 | 0.7626 | 0.5455 | 0.5763 |
0.2288 | 1.5855 | 1400 | 0.3009 | 0.6302 | 0.6667 | 0.6505 | 0.6595 | 0.6055 | 0.5983 | 0.5542 | 0.8381 | 0.7442 | 0.5098 | 0.5614 |
0.2286 | 1.6988 | 1500 | 0.2916 | 0.6254 | 0.6633 | 0.6464 | 0.6595 | 0.5455 | 0.6038 | 0.6105 | 0.8458 | 0.7536 | 0.4854 | 0.5333 |
0.2994 | 1.8120 | 1600 | 0.2880 | 0.6067 | 0.6346 | 0.6281 | 0.6274 | 0.5614 | 0.5893 | 0.6067 | 0.7912 | 0.7299 | 0.5047 | 0.4638 |
0.2636 | 1.9253 | 1700 | 0.2852 | 0.6281 | 0.6528 | 0.6482 | 0.6462 | 0.5419 | 0.5116 | 0.6279 | 0.8152 | 0.8092 | 0.5370 | 0.5538 |
0.2252 | 2.0385 | 1800 | 0.2787 | 0.6440 | 0.6726 | 0.6618 | 0.6557 | 0.5743 | 0.6095 | 0.5882 | 0.8222 | 0.7972 | 0.5321 | 0.5846 |
0.167 | 2.1518 | 1900 | 0.2910 | 0.6520 | 0.6787 | 0.6695 | 0.6840 | 0.5536 | 0.6290 | 0.6222 | 0.8438 | 0.8 | 0.5185 | 0.5970 |
0.1733 | 2.2650 | 2000 | 0.3006 | 0.6357 | 0.6585 | 0.6527 | 0.6543 | 0.5455 | 0.6126 | 0.6265 | 0.8161 | 0.7308 | 0.5470 | 0.5714 |
0.1733 | 2.3783 | 2100 | 0.2989 | 0.6461 | 0.6741 | 0.6627 | 0.6699 | 0.5333 | 0.6139 | 0.6067 | 0.8384 | 0.7820 | 0.5310 | 0.6176 |
0.175 | 2.4915 | 2200 | 0.3154 | 0.6367 | 0.6643 | 0.6562 | 0.6723 | 0.5405 | 0.6102 | 0.6292 | 0.8317 | 0.768 | 0.5289 | 0.5484 |
0.1883 | 2.6048 | 2300 | 0.3044 | 0.6445 | 0.6690 | 0.6642 | 0.6803 | 0.5116 | 0.6095 | 0.6237 | 0.8410 | 0.7692 | 0.5806 | 0.5758 |
0.1763 | 2.7180 | 2400 | 0.3139 | 0.6407 | 0.6667 | 0.6616 | 0.6791 | 0.4954 | 0.5983 | 0.5918 | 0.8586 | 0.7639 | 0.5833 | 0.5938 |
0.1498 | 2.8313 | 2500 | 0.2981 | 0.6665 | 0.6890 | 0.6838 | 0.6965 | 0.5645 | 0.6275 | 0.6383 | 0.85 | 0.7937 | 0.5738 | 0.6176 |
0.1864 | 2.9445 | 2600 | 0.3161 | 0.6341 | 0.6675 | 0.6598 | 0.6728 | 0.5333 | 0.5741 | 0.5941 | 0.8643 | 0.8060 | 0.5496 | 0.5172 |
0.1204 | 3.0578 | 2700 | 0.3140 | 0.6391 | 0.6643 | 0.6566 | 0.6759 | 0.5763 | 0.5607 | 0.5778 | 0.8442 | 0.7482 | 0.5366 | 0.6301 |
0.1401 | 3.1710 | 2800 | 0.3204 | 0.6504 | 0.6736 | 0.6687 | 0.6859 | 0.5321 | 0.6032 | 0.6304 | 0.8543 | 0.7612 | 0.5630 | 0.6087 |
0.1122 | 3.2843 | 2900 | 0.3279 | 0.6451 | 0.6612 | 0.6621 | 0.6649 | 0.5426 | 0.5825 | 0.6458 | 0.8092 | 0.7660 | 0.5865 | 0.5833 |
0.117 | 3.3975 | 3000 | 0.3268 | 0.6536 | 0.6777 | 0.6724 | 0.6849 | 0.5345 | 0.6154 | 0.6522 | 0.8557 | 0.7852 | 0.544 | 0.5882 |
0.1289 | 3.5108 | 3100 | 0.3500 | 0.6148 | 0.6389 | 0.6364 | 0.6406 | 0.5082 | 0.5714 | 0.6214 | 0.8068 | 0.7310 | 0.5645 | 0.5 |
0.1263 | 3.6240 | 3200 | 0.3362 | 0.6383 | 0.6594 | 0.6548 | 0.6655 | 0.5424 | 0.5849 | 0.6517 | 0.8197 | 0.7518 | 0.5345 | 0.5833 |
0.1307 | 3.7373 | 3300 | 0.3353 | 0.6526 | 0.6737 | 0.6694 | 0.6868 | 0.5312 | 0.5818 | 0.6374 | 0.8497 | 0.7606 | 0.5714 | 0.6364 |
0.1227 | 3.8505 | 3400 | 0.3362 | 0.6539 | 0.6737 | 0.6708 | 0.6895 | 0.5691 | 0.5827 | 0.6154 | 0.8410 | 0.7969 | 0.5455 | 0.6269 |
0.1023 | 3.9638 | 3500 | 0.3335 | 0.6556 | 0.6762 | 0.6739 | 0.6859 | 0.5714 | 0.6018 | 0.6304 | 0.8478 | 0.7794 | 0.5581 | 0.6 |
0.0977 | 4.0770 | 3600 | 0.3370 | 0.6503 | 0.6722 | 0.6686 | 0.6865 | 0.55 | 0.6034 | 0.6170 | 0.8482 | 0.7647 | 0.5625 | 0.6061 |
0.1234 | 4.1903 | 3700 | 0.3441 | 0.6480 | 0.6730 | 0.6679 | 0.6807 | 0.5606 | 0.6055 | 0.6222 | 0.8482 | 0.7826 | 0.5455 | 0.5714 |
0.079 | 4.3035 | 3800 | 0.3448 | 0.6498 | 0.6714 | 0.6671 | 0.6874 | 0.5354 | 0.6055 | 0.6170 | 0.8454 | 0.7794 | 0.5484 | 0.6176 |
0.0801 | 4.4168 | 3900 | 0.3490 | 0.6485 | 0.6698 | 0.6665 | 0.6872 | 0.5354 | 0.5660 | 0.6327 | 0.8482 | 0.7770 | 0.5625 | 0.6176 |
0.1057 | 4.5300 | 4000 | 0.3527 | 0.6527 | 0.6729 | 0.6713 | 0.6859 | 0.5455 | 0.5794 | 0.6392 | 0.8511 | 0.7852 | 0.5625 | 0.6061 |
0.0759 | 4.6433 | 4100 | 0.3494 | 0.6524 | 0.6729 | 0.6708 | 0.6868 | 0.5397 | 0.6071 | 0.6087 | 0.8449 | 0.7794 | 0.5781 | 0.6087 |
0.0933 | 4.7565 | 4200 | 0.3498 | 0.6497 | 0.6698 | 0.6671 | 0.6841 | 0.5354 | 0.6 | 0.6170 | 0.8449 | 0.7770 | 0.5556 | 0.6176 |
0.0621 | 4.8698 | 4300 | 0.3516 | 0.6498 | 0.6714 | 0.6682 | 0.6824 | 0.5354 | 0.6 | 0.6237 | 0.8495 | 0.7692 | 0.5645 | 0.6061 |
0.074 | 4.9830 | 4400 | 0.3517 | 0.6537 | 0.6737 | 0.6709 | 0.6855 | 0.5354 | 0.6 | 0.6237 | 0.8495 | 0.7801 | 0.56 | 0.6269 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.