RoBERTa-Base-SE2025T11A-sun-v20250111112049

This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1248
  • F1 Macro: 0.8714
  • F1 Micro: 0.8681
  • F1 Weighted: 0.8672
  • F1 Samples: 0.8874
  • F1 Label Marah: 0.8904
  • F1 Label Jijik: 0.8235
  • F1 Label Takut: 0.8722
  • F1 Label Senang: 0.8777
  • F1 Label Sedih: 0.8550
  • F1 Label Terkejut: 0.8358
  • F1 Label Biasa: 0.9451

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted F1 Samples F1 Label Marah F1 Label Jijik F1 Label Takut F1 Label Senang F1 Label Sedih F1 Label Terkejut F1 Label Biasa
0.4704 0.0556 100 0.4205 0.0663 0.0702 0.0664 0.0367 0.0723 0.0 0.1067 0.2597 0.0 0.0256 0.0
0.414 0.1111 200 0.3719 0.3114 0.3878 0.3223 0.2696 0.5873 0.0 0.5106 0.7285 0.175 0.1786 0.0
0.3685 0.1667 300 0.3395 0.3811 0.4376 0.3971 0.3370 0.5342 0.1235 0.4176 0.6957 0.5741 0.3226 0.0
0.3514 0.2222 400 0.3229 0.4565 0.5175 0.4646 0.4368 0.1818 0.4505 0.5882 0.8077 0.6074 0.44 0.12
0.3209 0.2778 500 0.3025 0.5226 0.5910 0.5437 0.5345 0.6374 0.2472 0.6422 0.8028 0.7049 0.5818 0.0417
0.3259 0.3333 600 0.2859 0.6432 0.6521 0.6452 0.6334 0.6267 0.5606 0.6727 0.8079 0.736 0.5607 0.5376
0.2832 0.3889 700 0.2842 0.5958 0.6238 0.5991 0.5846 0.6029 0.2828 0.7541 0.8169 0.6429 0.6447 0.4262
0.2857 0.4444 800 0.2615 0.6716 0.6667 0.6672 0.6441 0.6418 0.5658 0.7304 0.7656 0.6897 0.6102 0.6977
0.2933 0.5 900 0.2514 0.6939 0.6952 0.6909 0.6802 0.7170 0.5606 0.6789 0.8235 0.7213 0.6504 0.7059
0.2805 0.5556 1000 0.2420 0.7102 0.7106 0.7049 0.7015 0.6615 0.5968 0.7458 0.8261 0.7353 0.6613 0.7447
0.2637 0.6111 1100 0.2513 0.6916 0.6944 0.6904 0.6847 0.7195 0.5909 0.6909 0.7027 0.7843 0.65 0.7027
0.2798 0.6667 1200 0.2292 0.7256 0.7296 0.7247 0.7196 0.7417 0.5882 0.7521 0.8271 0.7626 0.7077 0.7
0.3081 0.7222 1300 0.2218 0.7399 0.7425 0.7375 0.7348 0.7368 0.5932 0.7368 0.8308 0.7862 0.7519 0.7436
0.2316 0.7778 1400 0.2149 0.7602 0.7622 0.7607 0.7646 0.7799 0.7013 0.7368 0.8406 0.7752 0.7576 0.7297
0.2726 0.8333 1500 0.2097 0.7677 0.7680 0.7634 0.7722 0.7328 0.6939 0.7304 0.8630 0.8276 0.7213 0.8049
0.2661 0.8889 1600 0.1956 0.7796 0.7807 0.7779 0.7837 0.8163 0.6667 0.7778 0.8444 0.7786 0.7826 0.7907
0.2647 0.9444 1700 0.1833 0.8141 0.8116 0.8089 0.8197 0.8514 0.7231 0.7907 0.8571 0.8120 0.7656 0.8989
0.2149 1.0 1800 0.1837 0.7949 0.7942 0.7904 0.8124 0.7681 0.7368 0.7414 0.8489 0.8593 0.7556 0.8544
0.1774 1.0556 1900 0.1798 0.8180 0.8174 0.8133 0.8305 0.8472 0.7087 0.8033 0.8531 0.8593 0.7656 0.8889
0.1706 1.1111 2000 0.1795 0.8088 0.8053 0.8022 0.8193 0.75 0.7368 0.8130 0.8652 0.8358 0.7717 0.8889
0.1813 1.1667 2100 0.1663 0.8265 0.8261 0.8235 0.8430 0.8784 0.7857 0.7934 0.8613 0.8308 0.7559 0.88
0.1824 1.2222 2200 0.1604 0.8246 0.8213 0.8189 0.8383 0.8345 0.7947 0.7934 0.8696 0.8 0.7634 0.9167
0.1927 1.2778 2300 0.1607 0.8277 0.8271 0.8242 0.8399 0.8611 0.7402 0.8062 0.8696 0.8550 0.7820 0.88
0.1435 1.3333 2400 0.1679 0.8215 0.8203 0.8182 0.8378 0.8143 0.7971 0.7869 0.8531 0.8462 0.7820 0.8713
0.1575 1.3889 2500 0.1508 0.8475 0.8456 0.8439 0.8554 0.8645 0.8 0.8065 0.8485 0.8921 0.8060 0.9149
0.1696 1.4444 2600 0.1439 0.8486 0.8481 0.8471 0.8625 0.8571 0.8472 0.8033 0.8657 0.8657 0.8235 0.8776
0.1886 1.5 2700 0.1421 0.8572 0.8559 0.8539 0.8686 0.8414 0.8451 0.7899 0.8741 0.9091 0.8261 0.9149
0.1389 1.5556 2800 0.1479 0.8449 0.8435 0.8418 0.8584 0.8235 0.8175 0.816 0.8676 0.8889 0.8120 0.8889
0.1733 1.6111 2900 0.1382 0.8514 0.8477 0.8464 0.8629 0.8456 0.8088 0.816 0.8696 0.8702 0.8148 0.9348
0.1736 1.6667 3000 0.1386 0.8504 0.8479 0.8458 0.8636 0.8406 0.8209 0.8722 0.8777 0.8189 0.8060 0.9167
0.1505 1.7222 3100 0.1353 0.8523 0.8505 0.8489 0.8702 0.8725 0.8 0.8550 0.8777 0.8346 0.8209 0.9053
0.1356 1.7778 3200 0.1308 0.8580 0.8556 0.8543 0.8727 0.8592 0.8148 0.8806 0.8696 0.8372 0.8296 0.9149
0.1418 1.8333 3300 0.1305 0.8628 0.8606 0.8593 0.8784 0.8966 0.8120 0.8636 0.8676 0.8462 0.8271 0.9263
0.1676 1.8889 3400 0.1277 0.8675 0.8647 0.8635 0.8833 0.8828 0.8060 0.8722 0.8777 0.8636 0.8358 0.9348
0.183 1.9444 3500 0.1259 0.8693 0.8656 0.8646 0.8842 0.8671 0.8235 0.8806 0.8777 0.8550 0.8358 0.9451
0.1634 2.0 3600 0.1248 0.8714 0.8681 0.8672 0.8874 0.8904 0.8235 0.8722 0.8777 0.8550 0.8358 0.9451

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alxxtexxr/RoBERTa-Base-SE2025T11A-sun-v20250111112049

Finetuned
(20)
this model