RoBERTa-Base-SE2025T11A-sun-v20250111112049
This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1248
- F1 Macro: 0.8714
- F1 Micro: 0.8681
- F1 Weighted: 0.8672
- F1 Samples: 0.8874
- F1 Label Marah: 0.8904
- F1 Label Jijik: 0.8235
- F1 Label Takut: 0.8722
- F1 Label Senang: 0.8777
- F1 Label Sedih: 0.8550
- F1 Label Terkejut: 0.8358
- F1 Label Biasa: 0.9451
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | F1 Samples | F1 Label Marah | F1 Label Jijik | F1 Label Takut | F1 Label Senang | F1 Label Sedih | F1 Label Terkejut | F1 Label Biasa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4704 | 0.0556 | 100 | 0.4205 | 0.0663 | 0.0702 | 0.0664 | 0.0367 | 0.0723 | 0.0 | 0.1067 | 0.2597 | 0.0 | 0.0256 | 0.0 |
0.414 | 0.1111 | 200 | 0.3719 | 0.3114 | 0.3878 | 0.3223 | 0.2696 | 0.5873 | 0.0 | 0.5106 | 0.7285 | 0.175 | 0.1786 | 0.0 |
0.3685 | 0.1667 | 300 | 0.3395 | 0.3811 | 0.4376 | 0.3971 | 0.3370 | 0.5342 | 0.1235 | 0.4176 | 0.6957 | 0.5741 | 0.3226 | 0.0 |
0.3514 | 0.2222 | 400 | 0.3229 | 0.4565 | 0.5175 | 0.4646 | 0.4368 | 0.1818 | 0.4505 | 0.5882 | 0.8077 | 0.6074 | 0.44 | 0.12 |
0.3209 | 0.2778 | 500 | 0.3025 | 0.5226 | 0.5910 | 0.5437 | 0.5345 | 0.6374 | 0.2472 | 0.6422 | 0.8028 | 0.7049 | 0.5818 | 0.0417 |
0.3259 | 0.3333 | 600 | 0.2859 | 0.6432 | 0.6521 | 0.6452 | 0.6334 | 0.6267 | 0.5606 | 0.6727 | 0.8079 | 0.736 | 0.5607 | 0.5376 |
0.2832 | 0.3889 | 700 | 0.2842 | 0.5958 | 0.6238 | 0.5991 | 0.5846 | 0.6029 | 0.2828 | 0.7541 | 0.8169 | 0.6429 | 0.6447 | 0.4262 |
0.2857 | 0.4444 | 800 | 0.2615 | 0.6716 | 0.6667 | 0.6672 | 0.6441 | 0.6418 | 0.5658 | 0.7304 | 0.7656 | 0.6897 | 0.6102 | 0.6977 |
0.2933 | 0.5 | 900 | 0.2514 | 0.6939 | 0.6952 | 0.6909 | 0.6802 | 0.7170 | 0.5606 | 0.6789 | 0.8235 | 0.7213 | 0.6504 | 0.7059 |
0.2805 | 0.5556 | 1000 | 0.2420 | 0.7102 | 0.7106 | 0.7049 | 0.7015 | 0.6615 | 0.5968 | 0.7458 | 0.8261 | 0.7353 | 0.6613 | 0.7447 |
0.2637 | 0.6111 | 1100 | 0.2513 | 0.6916 | 0.6944 | 0.6904 | 0.6847 | 0.7195 | 0.5909 | 0.6909 | 0.7027 | 0.7843 | 0.65 | 0.7027 |
0.2798 | 0.6667 | 1200 | 0.2292 | 0.7256 | 0.7296 | 0.7247 | 0.7196 | 0.7417 | 0.5882 | 0.7521 | 0.8271 | 0.7626 | 0.7077 | 0.7 |
0.3081 | 0.7222 | 1300 | 0.2218 | 0.7399 | 0.7425 | 0.7375 | 0.7348 | 0.7368 | 0.5932 | 0.7368 | 0.8308 | 0.7862 | 0.7519 | 0.7436 |
0.2316 | 0.7778 | 1400 | 0.2149 | 0.7602 | 0.7622 | 0.7607 | 0.7646 | 0.7799 | 0.7013 | 0.7368 | 0.8406 | 0.7752 | 0.7576 | 0.7297 |
0.2726 | 0.8333 | 1500 | 0.2097 | 0.7677 | 0.7680 | 0.7634 | 0.7722 | 0.7328 | 0.6939 | 0.7304 | 0.8630 | 0.8276 | 0.7213 | 0.8049 |
0.2661 | 0.8889 | 1600 | 0.1956 | 0.7796 | 0.7807 | 0.7779 | 0.7837 | 0.8163 | 0.6667 | 0.7778 | 0.8444 | 0.7786 | 0.7826 | 0.7907 |
0.2647 | 0.9444 | 1700 | 0.1833 | 0.8141 | 0.8116 | 0.8089 | 0.8197 | 0.8514 | 0.7231 | 0.7907 | 0.8571 | 0.8120 | 0.7656 | 0.8989 |
0.2149 | 1.0 | 1800 | 0.1837 | 0.7949 | 0.7942 | 0.7904 | 0.8124 | 0.7681 | 0.7368 | 0.7414 | 0.8489 | 0.8593 | 0.7556 | 0.8544 |
0.1774 | 1.0556 | 1900 | 0.1798 | 0.8180 | 0.8174 | 0.8133 | 0.8305 | 0.8472 | 0.7087 | 0.8033 | 0.8531 | 0.8593 | 0.7656 | 0.8889 |
0.1706 | 1.1111 | 2000 | 0.1795 | 0.8088 | 0.8053 | 0.8022 | 0.8193 | 0.75 | 0.7368 | 0.8130 | 0.8652 | 0.8358 | 0.7717 | 0.8889 |
0.1813 | 1.1667 | 2100 | 0.1663 | 0.8265 | 0.8261 | 0.8235 | 0.8430 | 0.8784 | 0.7857 | 0.7934 | 0.8613 | 0.8308 | 0.7559 | 0.88 |
0.1824 | 1.2222 | 2200 | 0.1604 | 0.8246 | 0.8213 | 0.8189 | 0.8383 | 0.8345 | 0.7947 | 0.7934 | 0.8696 | 0.8 | 0.7634 | 0.9167 |
0.1927 | 1.2778 | 2300 | 0.1607 | 0.8277 | 0.8271 | 0.8242 | 0.8399 | 0.8611 | 0.7402 | 0.8062 | 0.8696 | 0.8550 | 0.7820 | 0.88 |
0.1435 | 1.3333 | 2400 | 0.1679 | 0.8215 | 0.8203 | 0.8182 | 0.8378 | 0.8143 | 0.7971 | 0.7869 | 0.8531 | 0.8462 | 0.7820 | 0.8713 |
0.1575 | 1.3889 | 2500 | 0.1508 | 0.8475 | 0.8456 | 0.8439 | 0.8554 | 0.8645 | 0.8 | 0.8065 | 0.8485 | 0.8921 | 0.8060 | 0.9149 |
0.1696 | 1.4444 | 2600 | 0.1439 | 0.8486 | 0.8481 | 0.8471 | 0.8625 | 0.8571 | 0.8472 | 0.8033 | 0.8657 | 0.8657 | 0.8235 | 0.8776 |
0.1886 | 1.5 | 2700 | 0.1421 | 0.8572 | 0.8559 | 0.8539 | 0.8686 | 0.8414 | 0.8451 | 0.7899 | 0.8741 | 0.9091 | 0.8261 | 0.9149 |
0.1389 | 1.5556 | 2800 | 0.1479 | 0.8449 | 0.8435 | 0.8418 | 0.8584 | 0.8235 | 0.8175 | 0.816 | 0.8676 | 0.8889 | 0.8120 | 0.8889 |
0.1733 | 1.6111 | 2900 | 0.1382 | 0.8514 | 0.8477 | 0.8464 | 0.8629 | 0.8456 | 0.8088 | 0.816 | 0.8696 | 0.8702 | 0.8148 | 0.9348 |
0.1736 | 1.6667 | 3000 | 0.1386 | 0.8504 | 0.8479 | 0.8458 | 0.8636 | 0.8406 | 0.8209 | 0.8722 | 0.8777 | 0.8189 | 0.8060 | 0.9167 |
0.1505 | 1.7222 | 3100 | 0.1353 | 0.8523 | 0.8505 | 0.8489 | 0.8702 | 0.8725 | 0.8 | 0.8550 | 0.8777 | 0.8346 | 0.8209 | 0.9053 |
0.1356 | 1.7778 | 3200 | 0.1308 | 0.8580 | 0.8556 | 0.8543 | 0.8727 | 0.8592 | 0.8148 | 0.8806 | 0.8696 | 0.8372 | 0.8296 | 0.9149 |
0.1418 | 1.8333 | 3300 | 0.1305 | 0.8628 | 0.8606 | 0.8593 | 0.8784 | 0.8966 | 0.8120 | 0.8636 | 0.8676 | 0.8462 | 0.8271 | 0.9263 |
0.1676 | 1.8889 | 3400 | 0.1277 | 0.8675 | 0.8647 | 0.8635 | 0.8833 | 0.8828 | 0.8060 | 0.8722 | 0.8777 | 0.8636 | 0.8358 | 0.9348 |
0.183 | 1.9444 | 3500 | 0.1259 | 0.8693 | 0.8656 | 0.8646 | 0.8842 | 0.8671 | 0.8235 | 0.8806 | 0.8777 | 0.8550 | 0.8358 | 0.9451 |
0.1634 | 2.0 | 3600 | 0.1248 | 0.8714 | 0.8681 | 0.8672 | 0.8874 | 0.8904 | 0.8235 | 0.8722 | 0.8777 | 0.8550 | 0.8358 | 0.9451 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.