alyzbane's picture
End of training
9af7f93 verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: 2025-01-21-15-57-43-swin-base-patch4-window7-224
    results: []

2025-01-21-15-57-43-swin-base-patch4-window7-224

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0384
  • Precision: 0.9928
  • Recall: 0.9926
  • F1: 0.9926
  • Accuracy: 0.992
  • Top1 Accuracy: 0.9926
  • Error Rate: 0.0080

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 3407
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Top1 Accuracy Error Rate
0.732 1.0 34 0.3980 0.9165 0.8741 0.8590 0.8649 0.8741 0.1351
0.2462 2.0 68 0.1051 0.9538 0.9481 0.9484 0.9499 0.9481 0.0501
0.1991 3.0 102 0.0384 0.9928 0.9926 0.9926 0.992 0.9926 0.0080
0.1559 4.0 136 0.0890 0.9802 0.9778 0.9780 0.9777 0.9778 0.0223
0.1024 5.0 170 0.1092 0.9863 0.9852 0.9852 0.9846 0.9852 0.0154

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3