|
--- |
|
tags: autonlp |
|
language: en |
|
widget: |
|
- text: "I love AutoNLP 🤗" |
|
datasets: |
|
- amansolanki/autonlp-data-Tweet-Sentiment-Extraction |
|
co2_eq_emissions: 3.651199395353127 |
|
--- |
|
|
|
# Model Trained Using AutoNLP |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 20114061 |
|
- CO2 Emissions (in grams): 3.651199395353127 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.5046541690826416 |
|
- Accuracy: 0.8036219581211093 |
|
- Macro F1: 0.807095210403678 |
|
- Micro F1: 0.8036219581211093 |
|
- Weighted F1: 0.8039634739225368 |
|
- Macro Precision: 0.8076842795233988 |
|
- Micro Precision: 0.8036219581211093 |
|
- Weighted Precision: 0.8052135235094771 |
|
- Macro Recall: 0.8075241470527056 |
|
- Micro Recall: 0.8036219581211093 |
|
- Weighted Recall: 0.8036219581211093 |
|
|
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoNLP", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |