|
--- |
|
license: apache-2.0 |
|
tags: |
|
- RyzenAI |
|
- Image Segmentation |
|
- Pytorch |
|
- Vision |
|
datasets: |
|
- cityscape |
|
language: |
|
- en |
|
Metircs: |
|
- mIoU |
|
--- |
|
|
|
# SemanticFPN model trained on cityscapes |
|
|
|
SemanticFPN is a conceptually simple yet effective baseline for panoptic segmentation trained on cityscapes. The method starts with Mask R-CNN with FPN and adds to it a lightweight semantic segmentation branch for dense-pixel prediction. It was introduced in the paper [Panoptic Feature Pyramid Networks in 2019](https://arxiv.org/pdf/1901.02446.pdf) by Kirillov, Alexander, et al. |
|
|
|
We develop a modified version that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com). |
|
|
|
|
|
## Model description |
|
|
|
SemanticFPN is a single network that unifies the tasks of instance segmentation and semantic segmentation. The network is designed by endowing Mask R-CNN, a popular instance segmentation method, with a semantic segmentation branch using a shared Feature Pyramid Network (FPN) backbone. This simple baseline not only remains effective for instance segmentation, but also yields a lightweight, top-performing method for semantic segmentation. It is a robust and accurate baseline for both tasks and can serve as a strong baseline for future research in panoptic segmentation. |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
You can use the raw model for image segmentation. See the [model hub](https://huggingface.co/models?sort=trending&search=amd%2FSemanticFPN) to look for all available SemanticFPN models. |
|
|
|
|
|
## How to use |
|
|
|
### Installation |
|
|
|
Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI. |
|
Run the following script to install pre-requisites for this model. |
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
|
|
### Data Preparation (optional: for accuracy evaluation) |
|
|
|
1. Download cityscapes dataset (https://www.cityscapes-dataset.com/downloads) |
|
- grundtruth folder: gtFine_trainvaltest.zip [241MB] |
|
- image folder: leftImg8bit_trainvaltest.zip [11GB] |
|
2. Organize the dataset directory as follows: |
|
```Plain |
|
βββ data |
|
βββ cityscapes |
|
βββ leftImg8bit |
|
| βββ train |
|
| βββ val |
|
βββ gtFine |
|
βββ train |
|
βββ val |
|
``` |
|
|
|
### Test & Evaluation |
|
|
|
- Code snippet from [`infer_onnx.py`](infer_onnx.py) on how to use |
|
```python |
|
parser = argparse.ArgumentParser(description='SemanticFPN model') |
|
parser.add_argument('--onnx_path', type=str, default='FPN_int_NHWC.onnx') |
|
parser.add_argument('--save_path', type=str, default='./data/demo_results/senmatic_results.png') |
|
parser.add_argument('--input_path', type=str, default='data/cityscapes/cityscapes/leftImg8bit/test/bonn/bonn_000000_000019_leftImg8bit.png') |
|
parser.add_argument('--ipu', action='store_true', |
|
help='use ipu') |
|
parser.add_argument('--provider_config', type=str, default=None, |
|
help='provider config path') |
|
args = parser.parse_args() |
|
|
|
if args.ipu: |
|
providers = ["VitisAIExecutionProvider"] |
|
provider_options = [{"config_file": args.provider_config}] |
|
else: |
|
providers = ['CPUExecutionProvider'] |
|
provider_options = None |
|
|
|
onnx_path = args.onnx_path |
|
input_img = build_img(args) |
|
session = onnxruntime.InferenceSession(onnx_path, providers=providers, provider_options=provider_options) |
|
ort_input = {session.get_inputs()[0].name: input_img.cpu().numpy()} |
|
ort_output = session.run(None, ort_input)[0] |
|
if isinstance(ort_output, (tuple, list)): |
|
ort_output = ort_output[0] |
|
|
|
output = ort_output[0].transpose(1, 2, 0) |
|
seg_pred = np.asarray(np.argmax(output, axis=2), dtype=np.uint8) |
|
color_mask = colorize_mask(seg_pred) |
|
color_mask.save(args.save_path) |
|
``` |
|
|
|
- Run inference for a single image |
|
```python |
|
python infer_onnx.py --onnx_path FPN_int_NHWC.onnx --input_path /Path/To/Your/Image --ipu --provider_config Path/To/vaip_config.json |
|
``` |
|
|
|
- Test accuracy of the quantized model |
|
```python |
|
python test_onnx.py --onnx_path FPN_int_NHWC.onnx --dataset citys --test-folder ./data/cityscapes --crop-size 256 --ipu --provider_config Path/To/vaip_config.json |
|
``` |
|
### Performance |
|
|
|
| model | input size | FLOPs | mIoU on Cityscapes Validation| |
|
|-------|------------|--------------|-------| |
|
| SemanticFPN(ResNet18)| 256x512 | 10G | 62.9% | |
|
|
|
| model | input size | FLOPs | INT8 mIoU on Cityscapes Validation| |
|
|-------|------------|---------------|--------------| |
|
| SemanticFPN(ResNet18)| 256x512 | 10G | 62.5% | |
|
|
|
```bibtex |
|
@inproceedings{kirillov2019panoptic, |
|
title={Panoptic feature pyramid networks}, |
|
author={Kirillov, Alexander and Girshick, Ross and He, Kaiming and Doll{\'a}r, Piotr}, |
|
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, |
|
pages={6399--6408}, |
|
year={2019} |
|
} |
|
``` |