SemanticFPN / README.md
wensongc's picture
Update README.md
9c96efc verified
|
raw
history blame
4.91 kB
---
license: apache-2.0
tags:
- RyzenAI
- Image Segmentation
- Pytorch
- Vision
datasets:
- cityscape
language:
- en
Metircs:
- mIoU
---
# SemanticFPN model trained on cityscapes
SemanticFPN is a conceptually simple yet effective baseline for panoptic segmentation trained on cityscapes. The method starts with Mask R-CNN with FPN and adds to it a lightweight semantic segmentation branch for dense-pixel prediction. It was introduced in the paper [Panoptic Feature Pyramid Networks in 2019](https://arxiv.org/pdf/1901.02446.pdf) by Kirillov, Alexander, et al.
We develop a modified version that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com).
## Model description
SemanticFPN is a single network that unifies the tasks of instance segmentation and semantic segmentation. The network is designed by endowing Mask R-CNN, a popular instance segmentation method, with a semantic segmentation branch using a shared Feature Pyramid Network (FPN) backbone. This simple baseline not only remains effective for instance segmentation, but also yields a lightweight, top-performing method for semantic segmentation. It is a robust and accurate baseline for both tasks and can serve as a strong baseline for future research in panoptic segmentation.
## Intended uses & limitations
You can use the raw model for image segmentation. See the [model hub](https://huggingface.co/models?sort=trending&search=amd%2FSemanticFPN) to look for all available SemanticFPN models.
## How to use
### Installation
Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI.
Run the following script to install pre-requisites for this model.
```bash
pip install -r requirements.txt
```
### Data Preparation (optional: for accuracy evaluation)
1. Download cityscapes dataset (https://www.cityscapes-dataset.com/downloads)
- grundtruth folder: gtFine_trainvaltest.zip [241MB]
- image folder: leftImg8bit_trainvaltest.zip [11GB]
2. Organize the dataset directory as follows:
```Plain
└── data
└── cityscapes
β”œβ”€β”€ leftImg8bit
| β”œβ”€β”€ train
| └── val
└── gtFine
β”œβ”€β”€ train
└── val
```
### Test & Evaluation
- Code snippet from [`infer_onnx.py`](infer_onnx.py) on how to use
```python
parser = argparse.ArgumentParser(description='SemanticFPN model')
parser.add_argument('--onnx_path', type=str, default='FPN_int_NHWC.onnx')
parser.add_argument('--save_path', type=str, default='./data/demo_results/senmatic_results.png')
parser.add_argument('--input_path', type=str, default='data/cityscapes/cityscapes/leftImg8bit/test/bonn/bonn_000000_000019_leftImg8bit.png')
parser.add_argument('--ipu', action='store_true',
help='use ipu')
parser.add_argument('--provider_config', type=str, default=None,
help='provider config path')
args = parser.parse_args()
if args.ipu:
providers = ["VitisAIExecutionProvider"]
provider_options = [{"config_file": args.provider_config}]
else:
providers = ['CPUExecutionProvider']
provider_options = None
onnx_path = args.onnx_path
input_img = build_img(args)
session = onnxruntime.InferenceSession(onnx_path, providers=providers, provider_options=provider_options)
ort_input = {session.get_inputs()[0].name: input_img.cpu().numpy()}
ort_output = session.run(None, ort_input)[0]
if isinstance(ort_output, (tuple, list)):
ort_output = ort_output[0]
output = ort_output[0].transpose(1, 2, 0)
seg_pred = np.asarray(np.argmax(output, axis=2), dtype=np.uint8)
color_mask = colorize_mask(seg_pred)
color_mask.save(args.save_path)
```
- Run inference for a single image
```python
python infer_onnx.py --onnx_path FPN_int_NHWC.onnx --input_path /Path/To/Your/Image --ipu --provider_config Path/To/vaip_config.json
```
- Test accuracy of the quantized model
```python
python test_onnx.py --onnx_path FPN_int_NHWC.onnx --dataset citys --test-folder ./data/cityscapes --crop-size 256 --ipu --provider_config Path/To/vaip_config.json
```
### Performance
| model | input size | FLOPs | mIoU on Cityscapes Validation|
|-------|------------|--------------|-------|
| SemanticFPN(ResNet18)| 256x512 | 10G | 62.9% |
| model | input size | FLOPs | INT8 mIoU on Cityscapes Validation|
|-------|------------|---------------|--------------|
| SemanticFPN(ResNet18)| 256x512 | 10G | 62.5% |
```bibtex
@inproceedings{kirillov2019panoptic,
title={Panoptic feature pyramid networks},
author={Kirillov, Alexander and Girshick, Ross and He, Kaiming and Doll{\'a}r, Piotr},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={6399--6408},
year={2019}
}
```