yolov5s / README.md
zhengrongzhang's picture
Update README.md (#6)
581c9a2 verified
---
license: apache-2.0
tags:
- RyzenAI
- object-detection
- vision
- YOLO
- Pytorch
datasets:
- COCO
metrics:
- mAP
---
# YOLOv5s model trained on COCO
YOLOv5s is the small version of YOLOv5 model trained on COCO object detection (118k annotated images) at resolution 640x640. It was released in [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5).
We develop a modified version that could be supported by [AMD Ryzen AI](https://onnxruntime.ai/docs/execution-providers/Vitis-AI-ExecutionProvider.html).
## Model description
YOLOv5 πŸš€ is the world's most loved vision AI, representing Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
## Intended uses & limitations
You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=amd/yolov5) to look for all available YOLOv5 models.
## How to use
### Installation
Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI.
Run the following script to install pre-requisites for this model.
```bash
pip install -r requirements.txt
```
### Data Preparation (optional: for accuracy evaluation)
The dataset MSCOCO2017 contains 118287 images for training and 5000 images for validation.
Download COCO dataset and create directories in your code like this:
```plain
└── datasets
└── coco
β”œβ”€β”€ annotations
| β”œβ”€β”€ instances_val2017.json
| └── ...
β”œβ”€β”€ labels
| β”œβ”€β”€ val2017
| | β”œβ”€β”€ 000000000139.txt
| β”œβ”€β”€ 000000000285.txt
| └── ...
β”œβ”€β”€ images
| β”œβ”€β”€ val2017
| | β”œβ”€β”€ 000000000139.jpg
| β”œβ”€β”€ 000000000285.jpg
└── val2017.txt
```
1. put the val2017 image folder under images directory or use a softlink
2. the labels folder and val2017.txt above are generate by **general_json2yolo.py**
3. modify the coco.yaml like this:
```markdown
path: /path/to/your/datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
```
### Test & Evaluation
- Code snippet from [`infer_onnx.py`](infer_onnx.py) on how to use
```python
args = make_parser().parse_args()
onnx_path = args.onnx_model
onnx_weight = onnxruntime.InferenceSession(onnx_path)
grid = np.load("./grid.npy", allow_pickle=True)
anchor_grid = np.load("./anchor_grid.npy", allow_pickle=True)
path = args.image_path
new_path = args.output_path
conf_thres, iou_thres, classes, agnostic_nms, max_det = 0.25, 0.45, None, False, 1000
img0 = cv2.imread(path)
img = pre_process(img0)
onnx_input = {onnx_weight.get_inputs()[0].name: img}
onnx_output = onnx_weight.run(None, onnx_input)
onnx_output = post_process(onnx_output)
pred = non_max_suppression(
onnx_output[0], conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det
)
colors = Colors()
det = pred[0]
im0 = img0.copy()
annotator = Annotator(im0, line_width=2, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = f"{names[c]} {conf:.2f}"
annotator.box_label(xyxy, label, color=colors(c, True))
# Stream results
im0 = annotator.result()
cv2.imwrite(new_path, im0)
```
- Run inference for a single image
```python
python infer_onnx.py --onnx_model ./yolov5s.onnx -i /Path/To/Your/Image --ipu --provider_config /Path/To/Your/Provider_config
```
*Note: __vaip_config.json__ is located at the setup package of Ryzen AI (refer to [Installation](#installation))*
- Test accuracy of the quantized model
```python
python eval_onnx.py --onnx_model ./yolov5s.onnx --ipu --provider_config /Path/To/Your/Provider_config
```
### Performance
|Metric |Accuracy on IPU|
| :----: | :----: |
|AP\@0.50:0.95|0.356|
```bibtex
@software{glenn_jocher_2021_5563715,
author = {Glenn Jocher et. al.},
title = {{ultralytics/yolov5: v6.0 - YOLOv5n 'Nano' models,
Roboflow integration, TensorFlow export, OpenCV
DNN support}},
month = oct,
year = 2021,
publisher = {Zenodo},
version = {v6.0},
doi = {10.5281/zenodo.5563715},
url = {https://doi.org/10.5281/zenodo.5563715}
}
```