Upload code&model for NHWC format
#2
by
wangfangyuan
- opened
- onnx_eval.py +7 -4
- onnx_inference.py +4 -2
- yolov5s_qat.onnx +2 -2
onnx_eval.py
CHANGED
@@ -3,9 +3,10 @@ import json
|
|
3 |
import os
|
4 |
import sys
|
5 |
from pathlib import Path
|
|
|
6 |
import onnxruntime
|
7 |
import numpy as np
|
8 |
-
|
9 |
from tqdm import tqdm
|
10 |
from pycocotools.coco import COCO
|
11 |
from pycocotools.cocoeval import COCOeval
|
@@ -145,8 +146,10 @@ def run(data,
|
|
145 |
targets = targets.to(device)
|
146 |
nb, _, height, width = img.shape # batch size, channels, height, width
|
147 |
|
148 |
-
outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: img.cpu().numpy()})
|
149 |
-
outputs =
|
|
|
|
|
150 |
outputs = post_process(outputs)
|
151 |
out, train_out = outputs[0], outputs[1]
|
152 |
|
@@ -267,4 +270,4 @@ def main(opt):
|
|
267 |
|
268 |
if __name__ == "__main__":
|
269 |
opt = parse_opt()
|
270 |
-
main(opt)
|
|
|
3 |
import os
|
4 |
import sys
|
5 |
from pathlib import Path
|
6 |
+
import torch
|
7 |
import onnxruntime
|
8 |
import numpy as np
|
9 |
+
|
10 |
from tqdm import tqdm
|
11 |
from pycocotools.coco import COCO
|
12 |
from pycocotools.cocoeval import COCOeval
|
|
|
146 |
targets = targets.to(device)
|
147 |
nb, _, height, width = img.shape # batch size, channels, height, width
|
148 |
|
149 |
+
# outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: img.cpu().numpy()})
|
150 |
+
outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: img.permute(0, 2, 3, 1).cpu().numpy()})
|
151 |
+
# outputs = [torch.tensor(item).to(device) for item in outputs]
|
152 |
+
outputs = [torch.tensor(item).permute(0, 3, 1, 2).to(device) for item in outputs]
|
153 |
outputs = post_process(outputs)
|
154 |
out, train_out = outputs[0], outputs[1]
|
155 |
|
|
|
270 |
|
271 |
if __name__ == "__main__":
|
272 |
opt = parse_opt()
|
273 |
+
main(opt)
|
onnx_inference.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
-
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import torch
|
|
|
5 |
import sys
|
6 |
import pathlib
|
7 |
CURRENT_DIR = pathlib.Path(__file__).parent
|
@@ -113,8 +114,9 @@ if __name__ == '__main__':
|
|
113 |
|
114 |
img0 = cv2.imread(path)
|
115 |
img = pre_process(img0)
|
116 |
-
onnx_input = {onnx_model.get_inputs()[0].name: img}
|
117 |
onnx_output = onnx_model.run(None, onnx_input)
|
|
|
118 |
onnx_output = post_process(onnx_output)
|
119 |
pred = non_max_suppression(
|
120 |
onnx_output[0], conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det
|
|
|
1 |
+
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import torch
|
5 |
+
import onnxruntime
|
6 |
import sys
|
7 |
import pathlib
|
8 |
CURRENT_DIR = pathlib.Path(__file__).parent
|
|
|
114 |
|
115 |
img0 = cv2.imread(path)
|
116 |
img = pre_process(img0)
|
117 |
+
onnx_input = {onnx_model.get_inputs()[0].name: img.transpose(0, 2, 3, 1)}
|
118 |
onnx_output = onnx_model.run(None, onnx_input)
|
119 |
+
onnx_output = [torch.tensor(item).permute(0, 3, 1, 2) for item in onnx_output]
|
120 |
onnx_output = post_process(onnx_output)
|
121 |
pred = non_max_suppression(
|
122 |
onnx_output[0], conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det
|
yolov5s_qat.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f05e2860614a4d10757405f5e4ad2849d380631e16915f91aa0f69597d10575
|
3 |
+
size 29142007
|