es_fi_all / README.md
nouman-10's picture
update model card README.md
c6b8eb2
|
raw
history blame
4.03 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: es_fi_all_quy
    results: []

es_fi_all_quy

This model is a fine-tuned version of nouman-10/es_fi_all_quy on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4691
  • Bleu: 1.3097
  • Chrf: 33.573
  • Gen Len: 42.0221

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Chrf Gen Len
0.2653 0.09 1000 0.4870 1.3376 32.1158 43.001
0.2668 0.17 2000 0.4826 1.3753 32.002 46.505
0.2567 0.26 3000 0.4820 1.2717 31.9404 46.7274
0.2561 0.34 4000 0.4825 1.4256 32.4758 41.7274
0.2618 0.43 5000 0.4850 1.6935 33.2306 37.2012
0.2705 0.51 6000 0.4723 1.372 32.4431 46.84
0.2681 0.6 7000 0.4758 1.4419 32.8507 45.6016
0.2629 0.68 8000 0.4737 1.4636 33.3288 40.0382
0.2773 0.77 9000 0.4715 1.2296 33.1241 41.502
0.2702 0.85 10000 0.4663 1.2579 32.8273 44.9034
0.2683 0.94 11000 0.4694 1.6207 32.8479 42.3964
0.259 1.02 12000 0.4766 1.4934 32.6413 41.0815
0.2537 1.11 13000 0.4713 1.7586 33.3814 39.9638
0.2516 1.19 14000 0.4724 1.593 33.4105 41.832
0.2574 1.28 15000 0.4749 1.3373 33.3664 42.3662
0.2523 1.37 16000 0.4701 1.1924 32.6157 42.7706
0.2462 1.45 17000 0.4710 1.5688 33.5992 40.5282
0.2513 1.54 18000 0.4723 1.2722 32.1578 47.4225
0.2504 1.62 19000 0.4728 1.3897 32.6709 40.8893
0.2502 1.71 20000 0.4714 1.5999 33.6673 41.5362
0.2434 1.79 21000 0.4715 1.9393 33.6971 40.8944
0.2483 1.88 22000 0.4688 1.8308 34.1117 37.7565
0.2435 1.96 23000 0.4693 1.8643 34.5409 38.6237
0.2377 2.05 24000 0.4702 1.6217 33.6401 40.4779
0.235 2.13 25000 0.4707 1.5441 33.588 39.8974
0.2345 2.22 26000 0.4710 2.0248 33.7469 37.2535
0.2423 2.3 27000 0.4691 1.9699 33.4757 37.9889
0.2388 2.39 28000 0.4669 1.5651 33.1965 39.7646
0.2367 2.47 29000 0.4682 1.69 33.9955 38.3199
0.2392 2.56 30000 0.4720 1.9972 33.902 41.2525
0.2382 2.65 31000 0.4721 2.0682 33.6693 38.3833
0.2373 2.73 32000 0.4690 2.0952 33.553 38.3229
0.2356 2.82 33000 0.4691 1.3097 33.573 42.0221

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3