Edit model card

SentenceTransformer based on l3cube-pune/indic-sentence-similarity-sbert

This is a sentence-transformers model finetuned from l3cube-pune/indic-sentence-similarity-sbert. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ammumadhu/Indic_Bert-8-layers")
# Run inference
sentences = [
    'Men are outdoors.',
    'A man is outside.',
    'A Little girl is enjoying cake outside.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.6061
spearman_cosine 0.6316
pearson_manhattan 0.4868
spearman_manhattan 0.5132
pearson_euclidean 0.506
spearman_euclidean 0.5306
pearson_dot 0.2198
spearman_dot 0.2098
pearson_max 0.6061
spearman_max 0.6316

Knowledge Distillation

Metric Value
negative_mse -3.0273

Semantic Similarity

Metric Value
pearson_cosine 0.7909
spearman_cosine 0.7965
pearson_manhattan 0.776
spearman_manhattan 0.773
pearson_euclidean 0.7764
spearman_euclidean 0.7736
pearson_dot 0.6959
spearman_dot 0.6843
pearson_max 0.7909
spearman_max 0.7965

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,147,385 training samples
  • Columns: sentence and label
  • Approximate statistics based on the first 1000 samples:
    sentence label
    type string list
    details
    • min: 4 tokens
    • mean: 12.59 tokens
    • max: 52 tokens
    • size: 768 elements
  • Samples:
    sentence label
    A person on a horse jumps over a broken down airplane. [-0.0009042086312547326, 0.02319158799946308, 0.016657305881381035, -0.004571350757032633, -0.008184989914298058, ...]
    Children smiling and waving at camera [-0.020024249330163002, -0.0005705401999875903, 0.025419672951102257, -0.014105383306741714, 0.009407470934092999, ...]
    A boy is jumping on skateboard in the middle of a red bridge. [-0.01713346689939499, -2.3264645278686658e-05, -0.0005397812929004431, 0.002506087301298976, 0.027286207303404808, ...]
  • Loss: MSELoss

Evaluation Dataset

sentence-transformers/wikipedia-en-sentences

  • Dataset: sentence-transformers/wikipedia-en-sentences at 4a0972d
  • Size: 10,000 evaluation samples
  • Columns: sentence and label
  • Approximate statistics based on the first 1000 samples:
    sentence label
    type string list
    details
    • min: 5 tokens
    • mean: 13.53 tokens
    • max: 61 tokens
    • size: 768 elements
  • Samples:
    sentence label
    Two women are embracing while holding to go packages. [-0.000599742284975946, 0.0042074089869856834, 0.0013686479069292545, -0.0009170330595225096, -0.010106148198246956, ...]
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. [0.003711540251970291, -0.005768307950347662, -0.03475787863135338, 0.010626137256622314, -0.0023863380774855614, ...]
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles [-0.014246350154280663, 0.015385480597615242, 0.0016394935082644224, -0.013386472128331661, -0.015061145648360252, ...]
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 0.0001
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss negative_mse sts-dev_spearman_cosine sts-test_spearman_cosine
0 0 - -3.0273 0.6316 -
0.2231 1000 0.0015 - - -
0.4462 2000 0.0001 - - -
0.6693 3000 0.0001 - - -
0.8925 4000 0.0001 - - -
1.0 4482 - - - 0.7965

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.0
  • Accelerate: 0.30.1
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
Downloads last month
2
Safetensors
Model size
181M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ammumadhu/Indic_Bert-8-layers

Finetuned
(2)
this model

Evaluation results