electra-italian-xxl-cased-squad-it

Electra model for (Extractive) Question Answering on Italian texts

Model description

This model has been fine-tuned on squad_it dataset, starting from the pre-trained model dbmdz/electra-base-italian-xxl-cased-discriminator.

It can be used for Extractive Q&A on Italian texts.

Evaluation

Metric Value
EM 0.660
F1 0.775

Evaluation notebook

Usage in Transformers 🤗

Model checkpoints are available for usage in PyTorch. They can be used directly with pipelines as:

from transformers import pipelines

qa = pipeline('question-answering', model='anakin87/electra-italian-xxl-cased-squad-it')
qa(question="Qual è il soprannome di Vasco Rossi?", context="Vasco Rossi, noto anche semplicemente come Vasco e in passato con l'appellativo Blasco (Zocca, 7 febbraio 1952), è un cantautore italiano")
>>> {'score': 0.93, 'start': 80, 'end': 86, 'answer': 'Blasco'}

Usage in Haystack 🚀🚀🚀

With the Haystack NLP framework, you can use this model and create a scalable Question Answering system that works across millions of documents.

For a complete walkthrough, see this notebook.

...
print_answers(prediction, details="medium")

>>> Query: Con chi ha parlato di vaccini il premier Mario Draghi?
Answers:
[   {   'answer': 'Von der Leyen',
        'context': " vaccino dell'azienda britannica. Durante la telefonata "
                   'tra Draghi e Von der Leyen, la presidente della '
                   'Commissione Ue ha annunciato al presidente del',
        'score': 0.9663902521133423},
    {   'answer': 'Ursula Von der Leyen',
        'context': 'colloquio telefonico con la presidente della Commissione '
                   'europea Ursula Von der Leyen. Secondo fonti di Palazzo '
                   'Chigi, dalla conversazione è emerso ch',
        'score': 0.9063920974731445},
    {   'answer': 'Mario Draghi, ha tenuto un lungo discorso alla 76esima '
                  'Assemblea Generale delle Nazioni Unite',
        'context': 'Il presidente del Consiglio, Mario Draghi, ha tenuto un '
                   'lungo discorso alla 76esima Assemblea Generale delle '
                   'Nazioni Unite, nella notte italiana. Tant',
        'score': 0.5243796706199646}]

Comparison ⚖️

Model EM F1 Model size (PyTorch) Architecture
it5/it5-large-question-answering 69.10 78.00 3.13 GB encoder-decoder
anakin87/electra-italian-xxl-cased-squad-it (this one) 66.03 77.47 437 MB encoder
it5/it5-base-question-answering 66.30 76.10 990 MB encoder-decoder
it5/mt5-base-question-answering 66.30 75.70 2.33 GB encoder-decoder
antoniocappiello/bert-base-italian-uncased-squad-it 63.80 75.30 440 MB encoder
luigisaetta/squad_it_xxl_cased_hub1 63.95 75.27 440 MB encoder
it5/it5-efficient-small-el32-question-answering 64.50 74.70 569 MB encoder-decoder
mrm8488/bert-italian-finedtuned-squadv1-it-alfa 62.51 74.16 440 MB encoder
mrm8488/umberto-wikipedia-uncased-v1-finetuned-squadv1-it 60.50 72.41 443 MB encoder
it5/it5-small-question-answering 61.90 71.60 308 MB encoder-decoder
it5/mt5-small-question-answering 56.00 66.00 1.2 GB encoder-decoder
DrQA-it trained on SQuAD-it 56.10 65.90 ? ?

Training details 🏋️‍

Training notebook

Hyperparameters

  • learning_rate: 2e-05
  • batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Created by Stefano Fiorucci/anakin87

Made with in Italy

Downloads last month
8
Safetensors
Model size
109M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train anakin87/electra-italian-xxl-cased-squad-it

Space using anakin87/electra-italian-xxl-cased-squad-it 1

Evaluation results