metadata
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
library_name: transformers
base_model: google/gemma-2b
tags:
- trl
- orpo
- generated_from_trainer
model-index:
- name: gemma-2b-orpo
results: []
datasets:
- alvarobartt/dpo-mix-7k-simplified
language:
- en
gemma-2b-orpo
This is an ORPO fine-tune of google/gemma-2b with
alvarobartt/dpo-mix-7k-simplified
.
ORPO
ORPO (Odds Ratio Preference Optimization) is a new training paradigm that combines the usually separated phases of SFT (Supervised Fine-Tuning) and Preference Alignment (usually performed with RLHF or simpler methods like DPO).
- Faster training
- Less memory usage (no reference model needed)
- Good results!
๐ Evaluation
Nous
gemma-2b-orpo performs well for its size on Nous' benchmark suite.
(evaluation conducted using LLM AutoEval).
Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
---|---|---|---|---|---|
anakin87/gemma-2b-orpo ๐ | 39.45 | 23.76 | 58.25 | 44.47 | 31.32 |
mlabonne/Gemmalpaca-2B ๐ | 38.39 | 24.48 | 51.22 | 47.02 | 30.85 |
google/gemma-2b-it ๐ | 36.1 | 23.76 | 43.6 | 47.64 | 29.41 |
google/gemma-2b ๐ | 34.26 | 22.7 | 43.35 | 39.96 | 31.03 |
๐ Dataset
alvarobartt/dpo-mix-7k-simplified
is a simplified version of argilla/dpo-mix-7k
.
You can find more information in the dataset card.
๐ฎ Model in action
Usage notebook
๐ Chat and RAG using Haystack
Simple text generation with Transformers
The model is small, so runs smoothly on Colab. It is also fine to load the model using quantization.
# pip install transformers accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="anakin87/gemma-2b-orpo", torch_dtype=torch.bfloat16, device_map="auto")
messages = [{"role": "user", "content": "Write a rap song on Vim vs VSCode."}]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False)
outputs = pipe(prompt, max_new_tokens=500, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Training
The model was trained using HF TRL. ๐ Training notebook
Framework versions
- Transformers 4.39.1
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2