anamaria1988's picture
Second version of Lunar Lander - 1M training steps
2727733
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f78e40b5170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f78e40b5200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f78e40b5290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f78e40b5320>", "_build": "<function ActorCriticPolicy._build at 0x7f78e40b53b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f78e40b5440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f78e40b54d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f78e40b5560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f78e40b55f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f78e40b5680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f78e40b5710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f78e4109240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652005128.6047041, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNNlL3XgzS52kxZPV/sLTJQTRS7oXsANAAAgD8AAIA/LUU9PlTzYT9boVs+LPH6vucAPj6DDb+7AAAAAAAAAAANdAm+pCVqu3hGYjs14aU4lamUPLHyiroAAIA/AACAP2DHrL4uE5A/e4Wpvm057b4cegC/DjItvAAAAAAAAAAAQP6NPRJLqTzZejK9eteLviJAhjsvsiC9AAAAAAAAAACa4Km8NuBmPwO0XL0T5R6/HtORvUNpqDwAAAAAAAAAALNzGT720SK8u0utOw1gNbqzYIm9U0sCuwAAgD8AAIA/+u93PqP6Qj+A5hA+yc4Ev6CiFD+Iy9U9AAAAAAAAAADmIJE9BRSHu7suPr65fy6+woUWPBKYKj8AAIA/AACAP12CZL4lLLU/OaEivxtTvL6ur6G+ST6BvgAAAAAAAAAAptQdPs8lcD9C+yM+F7Ujv32BCz4jE1i9AAAAAAAAAADz7RW+HEJAvB2PFjpAxHw4bcOiPbabWbkAAIA/AACAP6CTOb4ngQQ/J3iUPW3nAr9QWum9FfEBPgAAAAAAAAAAgOAXvRSyo7r6iSs8DfM9PLfy8TrmmCi9AACAPwAAgD8ADBG81Zm1P19Tkr7AJ7g9IVGBO045irwAAAAAAAAAAICeDr32fHS6SsGSPIoltLIlw3a6w6bbMgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKNNocrGucECUhpRSlIwBbJRLqYwBdJRHQLKDUk6tDD11fZQoaAZoCWgPQwidD88S5GtuQJSGlFKUaBVLzmgWR0Cyg1QiNbTudX2UKGgGaAloD0MIe/gyUQSZckCUhpRSlGgVS/9oFkdAsoPnTd+G5HV9lChoBmgJaA9DCHe+nxrvAXJAlIaUUpRoFUvaaBZHQLKD9qjJuEV1fZQoaAZoCWgPQwgl6ZrJt8NxQJSGlFKUaBVL52gWR0Cyg/ks8PnTdX2UKGgGaAloD0MIMqzijYyWckCUhpRSlGgVS+FoFkdAsoQoRL9MsnV9lChoBmgJaA9DCKSpnsw/E3NAlIaUUpRoFUvqaBZHQLKETCI1tO51fZQoaAZoCWgPQwh9sffiCy9wQJSGlFKUaBVLpmgWR0CyhGknb7CSdX2UKGgGaAloD0MImboru2Dob0CUhpRSlGgVS8loFkdAsoSKeHzpYHV9lChoBmgJaA9DCHhBRGra+G5AlIaUUpRoFUuyaBZHQLKErOJtSAJ1fZQoaAZoCWgPQwg/An/4eSFzQJSGlFKUaBVL5WgWR0CyhKU+5e7ddX2UKGgGaAloD0MIQs9m1edgcUCUhpRSlGgVS8JoFkdAsoS5KqXF+HV9lChoBmgJaA9DCHHGMCfoWnJAlIaUUpRoFUvmaBZHQLKEzcqe9SN1fZQoaAZoCWgPQwiuDoC4a75yQJSGlFKUaBVL92gWR0CyhM/I8yN5dX2UKGgGaAloD0MIXhH8b2WZcECUhpRSlGgVS8ZoFkdAsoT5qnFYMnV9lChoBmgJaA9DCK3boPab+HJAlIaUUpRoFUvYaBZHQLKFG1gpjMF1fZQoaAZoCWgPQwhZw0Xu6XNwQJSGlFKUaBVLn2gWR0CyhXjDjzZpdX2UKGgGaAloD0MI7ISX4JRNc0CUhpRSlGgVS8NoFkdAsoWbJ5mh/XV9lChoBmgJaA9DCHNIaqFk13JAlIaUUpRoFUu6aBZHQLKF4hx5s0p1fZQoaAZoCWgPQwipMoy7Ab1yQJSGlFKUaBVL92gWR0Cyhhcz2vjfdX2UKGgGaAloD0MIgT/8/DemcECUhpRSlGgVTQQBaBZHQLKGJlwLmZF1fZQoaAZoCWgPQwhrn47HjKVyQJSGlFKUaBVLvGgWR0Cyhk5L/S6UdX2UKGgGaAloD0MIBaInZZLuckCUhpRSlGgVS9poFkdAsoZxx1gYxnV9lChoBmgJaA9DCAhagSGrRXJAlIaUUpRoFUvuaBZHQLKGfn6Eal11fZQoaAZoCWgPQwjnwkgvKj1xQJSGlFKUaBVLq2gWR0CyhoBh+fAcdX2UKGgGaAloD0MIxk/j3jyfcECUhpRSlGgVS8toFkdAsoaBrvb48HV9lChoBmgJaA9DCL0cdt8x/mBAlIaUUpRoFU3oA2gWR0CyhpihnJ1adX2UKGgGaAloD0MIjj9R2bA5YUCUhpRSlGgVTegDaBZHQLKGsnxri2l1fZQoaAZoCWgPQwh8DixHCBZxQJSGlFKUaBVL1mgWR0CyhqvBrN4adX2UKGgGaAloD0MIx/FDpdFWckCUhpRSlGgVS9hoFkdAsoavZFocrHV9lChoBmgJaA9DCEnajT5mDXNAlIaUUpRoFUv8aBZHQLKGyoduHet1fZQoaAZoCWgPQwg9murJfNFyQJSGlFKUaBVL8WgWR0Cyhx7qD9OzdX2UKGgGaAloD0MI1v85zBe5ckCUhpRSlGgVS8hoFkdAsodBymygPHV9lChoBmgJaA9DCH3p7c/F0nBAlIaUUpRoFUvvaBZHQLKHcDDTBqN1fZQoaAZoCWgPQwhYxRuZRzdxQJSGlFKUaBVLzmgWR0Cyh7wQYk3TdX2UKGgGaAloD0MIW+1hL9TEckCUhpRSlGgVS+5oFkdAsofExpL26HV9lChoBmgJaA9DCMnJxK1CsnFAlIaUUpRoFUvdaBZHQLKHzf6oESx1fZQoaAZoCWgPQwjToGgegNhyQJSGlFKUaBVLwGgWR0Cyh+BuwX67dX2UKGgGaAloD0MIdsWM8LYeckCUhpRSlGgVS9ZoFkdAsofwPCl7+nV9lChoBmgJaA9DCJWcE3sowHFAlIaUUpRoFUuraBZHQLKH60eEIxB1fZQoaAZoCWgPQwhi+IiY0pByQJSGlFKUaBVLxWgWR0Cyh/S7f51vdX2UKGgGaAloD0MID39N1iicckCUhpRSlGgVS7doFkdAsogHuCwr2HV9lChoBmgJaA9DCMAEbt1NK3BAlIaUUpRoFUvDaBZHQLKIA+3H7xd1fZQoaAZoCWgPQwiKq8q+qx9zQJSGlFKUaBVL5WgWR0CyiC1UVBUrdX2UKGgGaAloD0MISkBMwgXscUCUhpRSlGgVS81oFkdAsogtInSfDnV9lChoBmgJaA9DCHGNz2R/x3JAlIaUUpRoFUvpaBZHQLKINQTEit91fZQoaAZoCWgPQwiOWfYkMMZwQJSGlFKUaBVNBAFoFkdAsoitCMPz4HV9lChoBmgJaA9DCNTuVwH+uHBAlIaUUpRoFUvwaBZHQLKI4vKlpGp1fZQoaAZoCWgPQwjuYMQ+wW5xQJSGlFKUaBVNAAFoFkdAsokqXb/OuHV9lChoBmgJaA9DCCAIkKGjVXFAlIaUUpRoFUu6aBZHQLKJLjHn2Zl1fZQoaAZoCWgPQwhdTgmISRV0QJSGlFKUaBVL8WgWR0CyiTz1f3N+dX2UKGgGaAloD0MIVB9I3jn2b0CUhpRSlGgVS7hoFkdAsolMcsDnvHV9lChoBmgJaA9DCOLnvwcvKXBAlIaUUpRoFUuuaBZHQLKJUFQl8gJ1fZQoaAZoCWgPQwjoaiv2F9JwQJSGlFKUaBVL0GgWR0CyiVHDm8ujdX2UKGgGaAloD0MIuf/IdChBcUCUhpRSlGgVS89oFkdAsolzFKkEcXV9lChoBmgJaA9DCIEKR5DKOXJAlIaUUpRoFUvtaBZHQLKJf5paibl1fZQoaAZoCWgPQwg4+S06GcxyQJSGlFKUaBVL4mgWR0CyiYvvF3pwdX2UKGgGaAloD0MIrWwf8tarcECUhpRSlGgVS7VoFkdAsomPTvy9VXV9lChoBmgJaA9DCCxF8pXA8HJAlIaUUpRoFUvJaBZHQLKJqhJiAlR1fZQoaAZoCWgPQwhsXtVZLX1zQJSGlFKUaBVL6GgWR0Cyibuj/MnrdX2UKGgGaAloD0MI2SH+YUuhckCUhpRSlGgVS/toFkdAsonKuMdcS3V9lChoBmgJaA9DCBPWxtgJXXFAlIaUUpRoFUvxaBZHQLKJ8flIVdp1fZQoaAZoCWgPQwj0F3rE6NBvQJSGlFKUaBVLt2gWR0CyijvV3EAHdX2UKGgGaAloD0MI4q/JGnXzckCUhpRSlGgVS8NoFkdAsoqxG+bmVHV9lChoBmgJaA9DCErRyr1Au3NAlIaUUpRoFUvDaBZHQLKKxslsxfx1fZQoaAZoCWgPQwj/7EeKCMBwQJSGlFKUaBVL1mgWR0CyisulbeMydX2UKGgGaAloD0MINxjqsEJ4cUCUhpRSlGgVS8JoFkdAsorGuU2UCHV9lChoBmgJaA9DCMdI9gg1m29AlIaUUpRoFUuyaBZHQLKK2ZU1hst1fZQoaAZoCWgPQwidhNIXwtlwQJSGlFKUaBVL42gWR0CyiuTNMXabdX2UKGgGaAloD0MImYQLeQRmbkCUhpRSlGgVS8RoFkdAsosOPKdQPHV9lChoBmgJaA9DCOrouBrZxHJAlIaUUpRoFUvVaBZHQLKLFYoRZlp1fZQoaAZoCWgPQwgvbw7X6u1yQJSGlFKUaBVLx2gWR0CyixkipvP1dX2UKGgGaAloD0MIhnMNMzQocUCUhpRSlGgVS7loFkdAsosvGwRoRXV9lChoBmgJaA9DCGuduBzv2nBAlIaUUpRoFUvRaBZHQLKLcTnq3Vl1fZQoaAZoCWgPQwh2UInr2ItyQJSGlFKUaBVL0WgWR0Cyi5xWcSXddX2UKGgGaAloD0MI7l9ZaRJacECUhpRSlGgVS7ZoFkdAsou3uZ1FIHV9lChoBmgJaA9DCBprf2c7VXJAlIaUUpRoFUuqaBZHQLKME/wAlv91fZQoaAZoCWgPQwi86CtIs+VuQJSGlFKUaBVLtWgWR0CyjFkkOZssdX2UKGgGaAloD0MIqG3DKAgVdECUhpRSlGgVS8toFkdAsox7jABT43V9lChoBmgJaA9DCDV6NUBpR3FAlIaUUpRoFUvhaBZHQLKMsXt0FKV1fZQoaAZoCWgPQwgDCvX0EdZwQJSGlFKUaBVLzmgWR0CyjNo9s7+2dX2UKGgGaAloD0MIh+EjYgrscUCUhpRSlGgVS9loFkdAsoz8L7XQMXV9lChoBmgJaA9DCME5I0q7aXFAlIaUUpRoFUv5aBZHQLKNDlVtGd91fZQoaAZoCWgPQwjqknGM5NtxQJSGlFKUaBVNBAFoFkdAso0Oh0yP/HV9lChoBmgJaA9DCPyO4bHfEHNAlIaUUpRoFUvdaBZHQLKNHxC6Ymd1fZQoaAZoCWgPQwhYdOs1vXRzQJSGlFKUaBVL7WgWR0CyjR/ZRKpUdX2UKGgGaAloD0MImntI+F75cUCUhpRSlGgVS8xoFkdAso1u8Gs3hnV9lChoBmgJaA9DCPIGmPkOknJAlIaUUpRoFUvxaBZHQLKNk0HQhOh1fZQoaAZoCWgPQwhNvtnmxvFwQJSGlFKUaBVL4WgWR0CyjbozN2TxdX2UKGgGaAloD0MIPujZrHpCb0CUhpRSlGgVS6hoFkdAso34vrWy1XV9lChoBmgJaA9DCP0VMlcG6XJAlIaUUpRoFUvZaBZHQLKOBv+OwPl1fZQoaAZoCWgPQwjHEAAce6NwQJSGlFKUaBVLwWgWR0CyjhDuF6AwdX2UKGgGaAloD0MI1LoNaj+scECUhpRSlGgVS9FoFkdAso6KFj/dZnV9lChoBmgJaA9DCIUJo1nZ5HFAlIaUUpRoFUvYaBZHQLKOxM8ox591fZQoaAZoCWgPQwiqKck6nNVxQJSGlFKUaBVLvWgWR0Cyjscyi22HdX2UKGgGaAloD0MI8ztNZnwidECUhpRSlGgVS81oFkdAso7aa5PM0XV9lChoBmgJaA9DCHpx4qvdC3BAlIaUUpRoFUvNaBZHQLKO6wqRU3p1fZQoaAZoCWgPQwjIW65+rM9yQJSGlFKUaBVL1mgWR0Cyju5yU9pzdX2UKGgGaAloD0MIUcHhBRF/cUCUhpRSlGgVS+RoFkdAso7+W3Sa3XV9lChoBmgJaA9DCJUO1v/5/nFAlIaUUpRoFUvMaBZHQLKPPIatLct1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 470, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}