Uploaded model

  • Developed by: anamikac2708
  • License: cc-by-nc-4.0
  • Finetuned from model : unsloth/llama-3-8b-bnb-4bit

This are lora adapeters that are trained on top of llama3-8B model using 2x faster Unsloth and Huggingface's TRL library using open-sourced finance dataset https://huggingface.co/datasets/FinLang/investopedia-instruction-tuning-dataset developed for finance application by FinLang Team

This project is for research purposes only. Third-party datasets may be subject to additional terms and conditions under their associated licenses.

How to Get Started with the Model

You can infer the adapters directly using Peft/Unsloth library or you can merge the adapter with the base model and can use it. Please find an example below using Unsloth:

import torch
from unsloth import FastLanguageModel
from transformers import AutoTokenizer, pipeline
max_seq_length=2048
model, tokenizer = FastLanguageModel.from_pretrained(
        model_name = "anamikac2708/Llama3-8b-finetuned-investopedia-Lora-Adapters", # YOUR MODEL YOU USED FOR TRAINING
        max_seq_length = max_seq_length,
        dtype = torch.bfloat16,
        load_in_4bit = False #Make it True if you want to use bitsandbytes 4bit
    )
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
example = [{'content': 'You are a financial expert and you can answer any questions related to finance. You will be given a context and a question. Understand the given context and\n        try to answer. Users will ask you questions in English and you will generate answer based on the provided CONTEXT.\n        CONTEXT:\n        D. in Forced Migration from the University of the Witwatersrand (Wits) in Johannesburg, South Africa; A postgraduate diploma in Folklore & Cultural Studies at Indira Gandhi National Open University (IGNOU) in New Delhi, India; A Masters of International Affairs at Columbia University; A BA from Barnard College at Columbia University\n', 'role': 'system'}, {'content': ' In which universities did the individual obtain their academic qualifications?\n', 'role': 'user'}, {'content': ' University of the Witwatersrand (Wits) in Johannesburg, South Africa; Indira Gandhi National Open University (IGNOU) in New Delhi, India; Columbia University; Barnard College at Columbia University.', 'role': 'assistant'}]
prompt = pipe.tokenizer.apply_chat_template(example[:2], tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.1, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.pad_token_id)
print(f"Query:\n{example[1]['content']}")
print(f"Context:\n{example[0]['content']}")
print(f"Original Answer:\n{example[2]['content']}")
print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}")

License

Since non-commercial datasets are used for fine-tuning, we release this model as cc-by-nc-4.0.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for anamikac2708/Llama3-8b-finetuned-investopedia-Lora-Adapters

Adapter
(204)
this model