law-game-evidence-replacement-finetune
This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.5533
- Map: 0.9339
- Map 50: 0.9616
- Map 75: 0.9575
- Map Small: 0.5574
- Map Medium: 0.9423
- Map Large: 0.9699
- Mar 1: 0.6597
- Mar 10: 0.9522
- Mar 100: 0.9722
- Mar Small: 0.7411
- Mar Medium: 0.9806
- Mar Large: 0.9908
- Map Evidence: -1.0
- Mar 100 Evidence: -1.0
- Map Ambulance: 0.9802
- Mar 100 Ambulance: 0.9899
- Map Artificial Target: 0.9245
- Mar 100 Artificial Target: 0.9611
- Map Cartridge: 0.9759
- Mar 100 Cartridge: 0.9937
- Map Gun: 0.9225
- Mar 100 Gun: 0.9542
- Map Knife: 0.8562
- Mar 100 Knife: 0.9404
- Map Police: 0.9495
- Mar 100 Police: 0.999
- Map Traffic Cone: 0.9285
- Mar 100 Traffic Cone: 0.9673
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Evidence | Mar 100 Evidence | Map Ambulance | Mar 100 Ambulance | Map Artificial Target | Mar 100 Artificial Target | Map Cartridge | Mar 100 Cartridge | Map Gun | Mar 100 Gun | Map Knife | Mar 100 Knife | Map Police | Mar 100 Police | Map Traffic Cone | Mar 100 Traffic Cone |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 183 | 17.1925 | 0.553 | 0.61 | 0.584 | 0.1918 | 0.3235 | 0.6555 | 0.5467 | 0.8763 | 0.8964 | 0.3142 | 0.8206 | 0.9705 | -1.0 | -1.0 | 0.9057 | 0.9848 | 0.5233 | 0.7299 | 0.9125 | 0.9647 | 0.1841 | 0.9194 | 0.6003 | 0.8687 | 0.518 | 0.9286 | 0.2268 | 0.8789 |
No log | 2.0 | 366 | 7.1301 | 0.7763 | 0.8536 | 0.8146 | 0.2855 | 0.6006 | 0.875 | 0.6198 | 0.9116 | 0.9359 | 0.62 | 0.876 | 0.9781 | -1.0 | -1.0 | 0.9418 | 0.9707 | 0.7052 | 0.8648 | 0.9529 | 0.9733 | 0.5436 | 0.9667 | 0.7831 | 0.9172 | 0.8516 | 0.9398 | 0.656 | 0.9191 |
37.3669 | 3.0 | 549 | 5.7075 | 0.848 | 0.9115 | 0.8936 | 0.3256 | 0.7543 | 0.9317 | 0.6317 | 0.9274 | 0.9486 | 0.6783 | 0.9289 | 0.9849 | -1.0 | -1.0 | 0.9687 | 0.9879 | 0.7575 | 0.8761 | 0.9619 | 0.9822 | 0.8187 | 0.9653 | 0.8076 | 0.9172 | 0.9181 | 0.9827 | 0.7032 | 0.9287 |
37.3669 | 4.0 | 732 | 5.8395 | 0.8232 | 0.8809 | 0.8653 | 0.3221 | 0.7104 | 0.8994 | 0.642 | 0.9362 | 0.9536 | 0.688 | 0.9333 | 0.9884 | -1.0 | -1.0 | 0.9718 | 0.9899 | 0.8061 | 0.8878 | 0.9676 | 0.9854 | 0.8731 | 0.9778 | 0.7678 | 0.9162 | 0.6454 | 0.9867 | 0.7303 | 0.9317 |
37.3669 | 5.0 | 915 | 5.2081 | 0.8722 | 0.924 | 0.9156 | 0.3818 | 0.7789 | 0.951 | 0.6457 | 0.9406 | 0.9593 | 0.6963 | 0.9663 | 0.9887 | -1.0 | -1.0 | 0.976 | 0.9899 | 0.8077 | 0.9071 | 0.973 | 0.9869 | 0.7967 | 0.9611 | 0.8391 | 0.9313 | 0.8822 | 0.9908 | 0.8309 | 0.9482 |
4.4127 | 6.0 | 1098 | 5.4515 | 0.8848 | 0.9339 | 0.9262 | 0.5118 | 0.8295 | 0.9572 | 0.6538 | 0.9446 | 0.9624 | 0.6997 | 0.9621 | 0.9903 | -1.0 | -1.0 | 0.9686 | 0.9889 | 0.7937 | 0.9057 | 0.9784 | 0.9886 | 0.8982 | 0.9722 | 0.8491 | 0.9434 | 0.8521 | 0.9888 | 0.8534 | 0.9495 |
4.4127 | 7.0 | 1281 | 4.9756 | 0.9019 | 0.9468 | 0.9396 | 0.5037 | 0.8805 | 0.9631 | 0.6476 | 0.9443 | 0.9666 | 0.703 | 0.9692 | 0.9932 | -1.0 | -1.0 | 0.9754 | 0.9889 | 0.821 | 0.9129 | 0.9753 | 0.9907 | 0.9017 | 0.9833 | 0.8054 | 0.9414 | 0.9414 | 0.9949 | 0.8933 | 0.9541 |
4.4127 | 8.0 | 1464 | 4.4998 | 0.9119 | 0.9554 | 0.9432 | 0.5098 | 0.9047 | 0.9619 | 0.6482 | 0.9436 | 0.9641 | 0.7091 | 0.9786 | 0.9876 | -1.0 | -1.0 | 0.9726 | 0.9899 | 0.869 | 0.9248 | 0.9738 | 0.9902 | 0.8528 | 0.9556 | 0.8667 | 0.9384 | 0.9631 | 0.9939 | 0.8853 | 0.9561 |
3.3287 | 9.0 | 1647 | 4.5378 | 0.9107 | 0.9472 | 0.9424 | 0.5347 | 0.91 | 0.9625 | 0.6551 | 0.9498 | 0.9694 | 0.7243 | 0.984 | 0.9908 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.8691 | 0.9281 | 0.9785 | 0.9939 | 0.9128 | 0.9736 | 0.8646 | 0.9424 | 0.8889 | 0.9929 | 0.8805 | 0.965 |
3.3287 | 10.0 | 1830 | 5.0033 | 0.8831 | 0.9264 | 0.9202 | 0.5206 | 0.8887 | 0.9369 | 0.6497 | 0.9456 | 0.9661 | 0.7104 | 0.9714 | 0.9895 | -1.0 | -1.0 | 0.9404 | 0.9899 | 0.8686 | 0.929 | 0.9741 | 0.9917 | 0.92 | 0.9722 | 0.8131 | 0.9323 | 0.7768 | 0.9908 | 0.889 | 0.9568 |
2.8465 | 11.0 | 2013 | 4.1896 | 0.9183 | 0.9522 | 0.9491 | 0.4507 | 0.8926 | 0.9704 | 0.6595 | 0.9497 | 0.9676 | 0.7033 | 0.9677 | 0.9884 | -1.0 | -1.0 | 0.9786 | 0.9899 | 0.8902 | 0.9333 | 0.9745 | 0.993 | 0.9182 | 0.9583 | 0.8633 | 0.9424 | 0.9004 | 0.9929 | 0.9031 | 0.963 |
2.8465 | 12.0 | 2196 | 4.3806 | 0.9118 | 0.9486 | 0.9445 | 0.5313 | 0.8959 | 0.9574 | 0.6545 | 0.9487 | 0.9701 | 0.688 | 0.9741 | 0.9929 | -1.0 | -1.0 | 0.9791 | 0.9899 | 0.8856 | 0.935 | 0.9736 | 0.9924 | 0.9151 | 0.975 | 0.8429 | 0.9384 | 0.8852 | 0.998 | 0.9008 | 0.9617 |
2.8465 | 13.0 | 2379 | 4.3575 | 0.9131 | 0.9471 | 0.9419 | 0.5419 | 0.9126 | 0.9643 | 0.6576 | 0.9531 | 0.9717 | 0.7239 | 0.9875 | 0.9909 | -1.0 | -1.0 | 0.9677 | 0.9899 | 0.8731 | 0.9358 | 0.9774 | 0.9951 | 0.9226 | 0.9708 | 0.8794 | 0.9545 | 0.8601 | 0.9939 | 0.9114 | 0.9617 |
2.5085 | 14.0 | 2562 | 4.0609 | 0.9277 | 0.9619 | 0.9539 | 0.5802 | 0.9195 | 0.9659 | 0.6566 | 0.9518 | 0.9703 | 0.7168 | 0.9791 | 0.9913 | -1.0 | -1.0 | 0.9697 | 0.9899 | 0.902 | 0.9451 | 0.9819 | 0.9958 | 0.9273 | 0.9667 | 0.8392 | 0.9374 | 0.954 | 0.9939 | 0.9199 | 0.9634 |
2.5085 | 15.0 | 2745 | 4.2034 | 0.9284 | 0.961 | 0.9559 | 0.541 | 0.9483 | 0.9743 | 0.6606 | 0.9502 | 0.9695 | 0.7169 | 0.9792 | 0.9902 | -1.0 | -1.0 | 0.979 | 0.9899 | 0.9022 | 0.9469 | 0.9781 | 0.9947 | 0.9251 | 0.9611 | 0.8495 | 0.9404 | 0.9481 | 0.9918 | 0.9167 | 0.9614 |
2.5085 | 16.0 | 2928 | 4.1849 | 0.9283 | 0.9599 | 0.9559 | 0.5591 | 0.9323 | 0.9644 | 0.6575 | 0.9493 | 0.9697 | 0.7267 | 0.9795 | 0.988 | -1.0 | -1.0 | 0.9716 | 0.9899 | 0.9033 | 0.948 | 0.9754 | 0.9949 | 0.9108 | 0.9583 | 0.8469 | 0.9404 | 0.9675 | 0.9929 | 0.9222 | 0.9634 |
2.2183 | 17.0 | 3111 | 4.0696 | 0.9222 | 0.9556 | 0.9503 | 0.5517 | 0.9288 | 0.9634 | 0.6572 | 0.9523 | 0.9726 | 0.7348 | 0.9863 | 0.992 | -1.0 | -1.0 | 0.9707 | 0.9899 | 0.9052 | 0.9496 | 0.9784 | 0.9949 | 0.9309 | 0.9694 | 0.8074 | 0.9465 | 0.9525 | 0.9959 | 0.91 | 0.962 |
2.2183 | 18.0 | 3294 | 4.3283 | 0.9126 | 0.9461 | 0.9414 | 0.5422 | 0.9246 | 0.9498 | 0.6564 | 0.9502 | 0.9698 | 0.7138 | 0.9805 | 0.9896 | -1.0 | -1.0 | 0.9723 | 0.9899 | 0.901 | 0.9483 | 0.9815 | 0.9952 | 0.9204 | 0.9528 | 0.7964 | 0.9394 | 0.9043 | 0.9969 | 0.9125 | 0.966 |
2.2183 | 19.0 | 3477 | 3.7839 | 0.9209 | 0.9518 | 0.9477 | 0.5608 | 0.9475 | 0.9583 | 0.6562 | 0.9512 | 0.9701 | 0.7414 | 0.9806 | 0.9885 | -1.0 | -1.0 | 0.9566 | 0.9899 | 0.9131 | 0.9531 | 0.9779 | 0.9949 | 0.9132 | 0.9486 | 0.833 | 0.9404 | 0.9407 | 0.9959 | 0.9117 | 0.9677 |
2.009 | 20.0 | 3660 | 3.7275 | 0.9287 | 0.958 | 0.9542 | 0.5558 | 0.9078 | 0.9681 | 0.6586 | 0.951 | 0.9709 | 0.7422 | 0.979 | 0.9892 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9239 | 0.96 | 0.9761 | 0.9944 | 0.9222 | 0.9514 | 0.8345 | 0.9364 | 0.9389 | 0.998 | 0.9248 | 0.966 |
2.009 | 21.0 | 3843 | 3.8496 | 0.93 | 0.9592 | 0.9554 | 0.5552 | 0.9187 | 0.9664 | 0.6581 | 0.9508 | 0.9708 | 0.7373 | 0.9788 | 0.9904 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9148 | 0.9565 | 0.9778 | 0.9949 | 0.9227 | 0.9556 | 0.853 | 0.9364 | 0.9443 | 1.0 | 0.9167 | 0.9624 |
1.8494 | 22.0 | 4026 | 3.6452 | 0.9309 | 0.9592 | 0.9551 | 0.5561 | 0.929 | 0.9664 | 0.6595 | 0.9495 | 0.9709 | 0.723 | 0.9801 | 0.9902 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9176 | 0.9593 | 0.9764 | 0.9935 | 0.9212 | 0.95 | 0.8459 | 0.9374 | 0.9471 | 0.999 | 0.928 | 0.9673 |
1.8494 | 23.0 | 4209 | 3.6352 | 0.9299 | 0.9587 | 0.9546 | 0.5524 | 0.9155 | 0.9681 | 0.659 | 0.9509 | 0.9708 | 0.7217 | 0.98 | 0.9902 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9175 | 0.9589 | 0.9756 | 0.9935 | 0.9217 | 0.9514 | 0.8458 | 0.9364 | 0.9448 | 0.999 | 0.9236 | 0.9667 |
1.8494 | 24.0 | 4392 | 3.6526 | 0.9298 | 0.9577 | 0.9535 | 0.5572 | 0.9119 | 0.9666 | 0.6593 | 0.9518 | 0.972 | 0.725 | 0.9794 | 0.9911 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9229 | 0.9609 | 0.976 | 0.9934 | 0.9217 | 0.9542 | 0.8493 | 0.9394 | 0.936 | 1.0 | 0.9226 | 0.9663 |
1.7025 | 25.0 | 4575 | 3.5533 | 0.9339 | 0.9616 | 0.9575 | 0.5574 | 0.9423 | 0.9699 | 0.6597 | 0.9522 | 0.9722 | 0.7411 | 0.9806 | 0.9908 | -1.0 | -1.0 | 0.9802 | 0.9899 | 0.9245 | 0.9611 | 0.9759 | 0.9937 | 0.9225 | 0.9542 | 0.8562 | 0.9404 | 0.9495 | 0.999 | 0.9285 | 0.9673 |
Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.3.1+cu121
- Tokenizers 0.19.1
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for anastasispk/law-game-evidence-replacement-finetune
Base model
PekingU/rtdetr_r50vd_coco_o365