flan-t5-base-samsum / README.md
eladven's picture
Evaluation results for andreaparker/flan-t5-base-samsum model as a base model for other tasks
b7236d5
|
raw
history blame
5.12 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: flan-t5-base-samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: test
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 47.4798

flan-t5-base-samsum

This model is a fine-tuned version of google/flan-t5-base on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3772
  • Rouge1: 47.4798
  • Rouge2: 23.9756
  • Rougel: 40.0392
  • Rougelsum: 43.6545
  • Gen Len: 17.3162

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.4403 1.0 1842 1.3829 46.5346 23.1326 39.4401 42.8272 17.0977
1.3534 2.0 3684 1.3732 47.0911 23.5074 39.5951 43.2279 17.4554
1.2795 3.0 5526 1.3709 46.8895 23.3243 39.5909 43.1286 17.2027
1.2313 4.0 7368 1.3736 47.4946 23.7802 39.9999 43.5903 17.2198
1.1934 5.0 9210 1.3772 47.4798 23.9756 40.0392 43.6545 17.3162

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2

Papers With Code Results

As of 2 February 2023 the Papers with Code page for this task has the following leaderboard.

Our score (Rouge 1 score of 47.4798) puts this model's performance between fourth and fifth place on the leaderboard:

PwC leaderboard

Model Recycling

Evaluation on 36 datasets using andreaparker/flan-t5-base-samsum as a base model yields average score of 77.86 in comparison to 68.82 by google/t5-v1_1-base.

The model is ranked 2nd among all tested models for the google/t5-v1_1-base architecture as of 07/02/2023 Results:

20_newsgroup ag_news amazon_reviews_multi anli boolq cb cola copa dbpedia esnli financial_phrasebank imdb isear mnli mrpc multirc poem_sentiment qnli qqp rotten_tomatoes rte sst2 sst_5bins stsb trec_coarse trec_fine tweet_ev_emoji tweet_ev_emotion tweet_ev_hate tweet_ev_irony tweet_ev_offensive tweet_ev_sentiment wic wnli wsc yahoo_answers
86.4312 89.8333 67.1 52.5937 82.1713 80.3571 80.5369 66 76.5 90.8897 86.7 93.044 71.6428 87.2457 88.7255 62.1287 91.3462 93.3004 89.1393 89.5872 84.4765 93.578 56.9683 89.3674 97.4 93 46.334 81.6327 51.4815 74.7449 84.7674 69.8795 67.8683 56.338 57.6923 72.3

For more information, see: Model Recycling