metadata
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
library_name: transformers
tags:
- mergekit
- merge
license: other
language:
- en
Meta-Llama-3-13B-Instruct
Meta-Llama-3-13B-Instruct is a meta-llama/Meta-Llama-3-8B-Instruct self-merge made with MergeKit.
Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- layer_range: [0, 16]
model: meta-llama/Meta-Llama-3-8B-Instruct
- sources:
- layer_range: [4, 24]
model: meta-llama/Meta-Llama-3-8B-Instruct
- sources:
- layer_range: [8, 31]
model: meta-llama/Meta-Llama-3-8B-Instruct
merge_method: passthrough
dtype: float16
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "andrijdavid/Meta-Llama-3-13B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))