whisper_largev2_jp / README.md
anhphuong's picture
End of training
2836658 verified
|
raw
history blame
2.18 kB
metadata
language:
  - vi
base_model: openai/whisper-medium-ja-v2
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Vi - Anh Phuong
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: ja
          split: None
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 62.82245827010622

Whisper Medium Vi - Anh Phuong

This model is a fine-tuned version of openai/whisper-medium-ja-v2 on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3098
  • Wer: 62.8225

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1131 1.4556 1000 0.2257 68.5454
0.0579 2.9112 2000 0.2363 65.5105
0.0087 4.3668 3000 0.2685 65.1203
0.003 5.8224 4000 0.2924 63.9931
0.0007 7.2780 5000 0.3041 63.1043
0.0005 8.7336 6000 0.3098 62.8225

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1